Skip to main content
Log in

Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 1010 or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215

    Article  CAS  Google Scholar 

  2. Fleischman M, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163

    Article  Google Scholar 

  3. Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 1:84

    Google Scholar 

  4. Schatz GC (1984) Acc Chem Res 17:370

    Article  CAS  Google Scholar 

  5. Metiu H, Das P (1984) Annu Rev Phys Chem 35:507

    Article  CAS  Google Scholar 

  6. Xu H, Aizpurua J, Kall M, Apell P (2000) Phys Rev E 62:4318

    Article  CAS  Google Scholar 

  7. Schatz GC, Van Duyne RP (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, New York

    Google Scholar 

  8. Nie S, Emory SR (1997) Science 275:1102

    Article  CAS  Google Scholar 

  9. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667

    Article  CAS  Google Scholar 

  10. Dieringer JA, Wustholz KL, Masiello DJ, Camden JP, Kleinman SL, Schatz GC, Van Duyne RP (2009) J Am Chem Soc 131:849

    Article  CAS  Google Scholar 

  11. Kerker M, Wang DS, Chew H (1980) Appl Opt 19:3373

    Article  CAS  Google Scholar 

  12. Doering WE, Piotti ME, Natan MJ, Freeman RG (2007) Adv Mater 19:3100

    Article  CAS  Google Scholar 

  13. Draine BT, Flatau PJ (1994) J Opt Soc Am A 11:1491

    Article  Google Scholar 

  14. Draine BT, Flatau PJ (2003) User guide for the discrete dipole approximation code DDSCAT.6.0. Available from: <http://arxiv.org/ags.astro-ph/0309069>

  15. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Inc., Norwood

    Google Scholar 

  16. Yee SK (1966) IEEE Trans Antennas Propagat 14:302

    Article  Google Scholar 

  17. Jin J (2002) The finite element method in electromagnetics, 2nd edn. Wiley, New York

    Google Scholar 

  18. Kottmann JP, Martin OJF, Smith DR, Schultz S (2000) Opt Express 6:213

    CAS  Google Scholar 

  19. Hao E, Schatz GC (2004) J Chem Phys 120:357

    Article  CAS  Google Scholar 

  20. Zou S, Schatz GC (2005) Chem Phys Lett 403:62

    Article  CAS  Google Scholar 

  21. Xu H (2004) Appl Phys Lett 85:5980

    Article  CAS  Google Scholar 

  22. Zeman EJ, Carron KT, Schatz GC, Van Duyne RP (1987) J Chem Phys 87:4189

    Article  CAS  Google Scholar 

  23. Kottmann JP, Martin OJF (2001) Opt Express 8:655

    Article  CAS  Google Scholar 

  24. Aravind PK, Nitzan A, Metiu H (1981) Surf Sci 110:189

    Article  CAS  Google Scholar 

  25. Vanin AI (1995) J Appl Spect 62

  26. Felidj N, Aubard J, Levi G (1999) J Chem Phys 111:1195

    Article  CAS  Google Scholar 

  27. McMahon JM (2009) JFEM2D. Available from: <http://www.thecomputationalphysicist.com>

  28. Schöberl J (2009) NETGEN. Available from <http://www.hpfem.jku.at/netgen/>

  29. Saxon DS (1955) UCLA Department of Meteorological Science Report 9

  30. McMahon JM, Gray SK, Schatz GC (2009) Surface nanophotonics theory. In: Wiederrecht G (ed) Comprehensive nanoscience and technology. Elsevier, Amsterdam

    Google Scholar 

  31. Lynch DW, Hunter WR (1985) In: Palik ED (ed) Handbook of optical constants of solids. Academic, Orlando

    Google Scholar 

  32. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  33. McMahon JM, Wang Y, Sherry LJ, Van Duyne RP, Marks LD, Gray SK, Schatz GC (2009) J Phys Chem C 113:2731–2735

    Article  CAS  Google Scholar 

  34. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302:419

    Article  CAS  Google Scholar 

  35. Garcia-Vidal FJ, Pendry JB (1996) Phys Rev Lett 77:1163

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the NSF (CHE-0414554), AFOSR/DARPA Project BAA07-61 (FA9550-08-1-0221), and NSF MRSEC (DMR-0520513) at the Materials Research Center of Northwestern University. We thank the NUANCE Center at Northwestern University for providing access to the TEM equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Schatz.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

Probability distributions of electromagnetic enhancements for nanoparticle separations from 5 to −20 nm; Percentage and number of molecules that contribute to the SERS signal for particle separations of 5 to −20 nm and molecular diameters of 0.25 to 2 nm (PDF 195 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, J.M., Henry, AI., Wustholz, K.L. et al. Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394, 1819–1825 (2009). https://doi.org/10.1007/s00216-009-2738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2738-4

Keywords

Navigation