Skip to main content
Log in

Bilayer lipid membranes from falling droplets

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We describe a system that provides a rapid and simple way of forming suspended lipid bilayers within a microfluidic platform from an aqueous droplet. Bilayer lipid membranes are created in a polymeric device by contacting monolayers formed at a two-phase liquid–liquid interface. Microdroplets, containing membrane proteins, are injected onto an electrode positioned above an aperture machined through a conical cavity that is filled with a lipid–alkane solution. The formation of the BLM depends solely on the device geometry and leads to spontaneous formation of lipid bilayers simply by dispensing droplets of buffer. When an aqueous droplet containing transmembrane proteins or proteoliposomes is injected, straightforward electrophysiology measurements are possible. This method is suitable for incorporation into lab-on-a-chip devices and allows for buffer exchange and electrical measurements.

Bilayer lipid membranes are formed in a polymeric device by injecting water droplets, containing membrane proteins, directly onto an electrode positioned above an aperture machined into a conical cavity, which is initially filled with a lipid-alkane solution. The water droplet slides down the electrode to the aperture at the bottom of the conical reservoir. The geometry of this system enables the spontaneous formation of a BLM. Ion channel activity is recorded between an electrode in the bottom channel and the electrode in the droplet. The technique is scalable and could be configured as a high throughput multi-site biosensing or drug screening platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tien HT (1974) Bilayer lipid membranes (BLM). Theory and practice. Dekker, New York

    Google Scholar 

  2. Montal M, Mueller P (1972) Proc Nat Acad Sci USA 69:3561–3566

    Article  CAS  Google Scholar 

  3. Cooper MA (2004) J Mol Recognit 17:286–315

    Article  CAS  Google Scholar 

  4. Castellana ET, Cremer PS (2006) Surf Sci Rep 61:429–444

    Article  CAS  Google Scholar 

  5. Tien HT, Ottova AL (1998) Electrochim Acta 43:3587–3610

    Article  CAS  Google Scholar 

  6. Mischak H, Apweiler R, Banks RE, Conaway M, Coon J, Dominiczak A, Ehrich JH, Fliser D, Girolami M, Hermjakob H, Hochstrasser D, Jankowski J, Julian BA, Kolch W, Massy ZA, Neusuess C, Novak J, Peter K, Rossing K, Schanstra J, Semmes OJ, Theodorescu D, Thongboonkerd V, Weissinger EM, Van Eyk JE, Yamamoto T (2007) Proteomics Clin Appl 1:148–156

    Article  CAS  Google Scholar 

  7. Vitzthum F, Behrens F, Anderson NL, Shaw JH (2005) J Prot Res 4:1086–1097

    Article  CAS  Google Scholar 

  8. Andersson M, Okeyo G, Wilson D, Keizer H, Moe P, Blount P, Fine P, Dodabalapur A, Duran RS (2008) Biosens Bioelectron 23:919–923

    Article  CAS  Google Scholar 

  9. Le Pioufle B, Suzuki H, Tabata KV, Noji H, Takeuchi S (2008) Anal Chem 80:328–332

    Article  Google Scholar 

  10. Maurer JA, White VE, Dougherty DA, Nadeau JL (2007) Biosens Bioelectron 22:2577–2584

    Article  CAS  Google Scholar 

  11. Zagnoni M, Sandison M, Marius P, Lee AG, Morgan H (2007) Lab Chip 7:1176–1183

    Article  CAS  Google Scholar 

  12. Malmstadt N, Nash MA, Purnell RF, Schmidt JJ (2006) Nano Letters 6:1961–1965

    Article  CAS  Google Scholar 

  13. Schmitt EK, Vrouenraets M, Steinem C (2006) Biophys J 91:2163–2171

    Article  CAS  Google Scholar 

  14. White RJ, Ervin EN, Yang T, Chen X, Daniel S, Cremer PS, White HS (2007) J Am Chem Soc 129:11766–11775

    Article  CAS  Google Scholar 

  15. Sandison ME, Zagnoni M, Morgan H (2007) Langmuir 23:8277–8284

    Article  CAS  Google Scholar 

  16. Holden MA, Needham D, Bayley H (2007) J Am Chem Soc 129:8650–8655

    Article  CAS  Google Scholar 

  17. Funakoshi K, Suzuki H, Takeuchi S (2006) Anal Chem 78:8169–8174

    Article  CAS  Google Scholar 

  18. Heron AJ, Thompson JR, Mason AE, Wallace MI (2007) J Am Chem Soc 129:16042–16047

    Article  CAS  Google Scholar 

  19. Poulos JL, Tae-Joon Jeon, Damoiseaux R, Gillespie EJ, Bradley KA, Schmidt JJ (2008) Biosens Bioelectron. doi:10.1016/j.bios.2008.08.041

  20. Marius P, Alvis SJ, East JM, Lee AG (2005) Biophys J 89:4081–4089

    Article  CAS  Google Scholar 

  21. Andersen OS, Koeppe RE, Roux B (2005) IEEE Trans Nanobiosci 4:10–20

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the 6th Framework Programme of the European Commission, under the contract NMP4-CT-2005-017114 “RECEPTRONICS”, and the UK Interdisciplinary Research Centre in Bio-Nanotechnology (R45659/01). KcsA was a kind gift of Prof. A. Lee from the School of Biological Sciences, University of Southampton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Zagnoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagnoni, M., Sandison, M.E., Marius, P. et al. Bilayer lipid membranes from falling droplets. Anal Bioanal Chem 393, 1601–1605 (2009). https://doi.org/10.1007/s00216-008-2588-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2588-5

Keywords

Navigation