Skip to main content
Log in

Method for simultaneous luminescence sensing of two species using optical probes of different decay time, and its application to an enzymatic reaction at varying temperature

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chemical sensing, imaging and microscopy based on the use of fluorescent probes has so far been limited almost exclusively to the detection of a single parameter at a time. We present a scheme that can overcome this limitation by enabling optical sensing of two parameter simultaneously and even at identical excitation and emission wavelengths of two probes provided (a) their decay times are different enough to enable two time windows to be recorded, and (b) the emission of the shorter-lived probe decays to below the detectable limit while that of the other still can be measured. We refer to this new scheme as the dual lifetime determination (DLD) method and show that it can be widely varied by appropriate choice of probes and experimental settings. DLD is demonstrated to work by sensing oxygen and temperature independently from each other by making use of two probes, one for oxygen (a platinum porphyrin dissolved in polystyrene), and one for temperature [a europium complex dissolved in poly(vinyl methylketone)]. DLD was applied to monitor the consumption of oxygen in the glucose oxidase-catalyzed oxidation of glucose at varying temperatures. The scheme is expected to have further applications in cellular assays and biophysical imaging.

Principle behind the dual lifetime determination (DLD) method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McDonagh C, Burke CS, MacCraith BD (2008) Chem Rev 108:400–422

    Article  CAS  Google Scholar 

  2. Eggins BR (2002) Chemical sensors and biosensors. Wiley, Chichester

    Google Scholar 

  3. Wolfbeis OS (2008) Anal Chem 80:4269–4283 and previous biannual reviews

    Article  CAS  Google Scholar 

  4. Borisov SM, Wolfbeis OS (2008) Chem Rev 108:423–461

    Article  CAS  Google Scholar 

  5. Wallrabe H, Periasamy A (2005) Curr Opin Biotechnol 16:19–27

    Article  CAS  Google Scholar 

  6. Colyer RA, Lee C, Gratton E (2008) Microsc Res Tech 71:201–213

    Article  Google Scholar 

  7. Zheng Q, Xu G, Prasad PN (2008) Chem Eur J 14:5812–5819

    Article  CAS  Google Scholar 

  8. Bonnist EY, Jones AC (2008) Chem Phys Chem 8:1121–1129

    Google Scholar 

  9. Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Nat Rev Mol Cell Biol 3:906–918

    Article  CAS  Google Scholar 

  10. Wolfbeis OS (ed) (2008) Fluorescence methods and applications: spectroscopy, imaging and probes. Ann NY Acad Sci 1430:1–388

  11. Zheng Q, Xu G, Prasad PN (2008) Chem Eur J 14:5812–5819

    Article  CAS  Google Scholar 

  12. Zhang L, Clark RJ, Zhu L (2008) Chem Eur J 14:2894–2903

    Article  CAS  Google Scholar 

  13. Chen X, Wang X, Wang S, Shi W, Wang K, Ma H (2008) Chem Eur J 14:4719–4724

    Article  CAS  Google Scholar 

  14. Valeur B (2002) Molecular fluorescence: principles and applications. Wiley-VCH, Weinheim

    Google Scholar 

  15. Uchiyama S, Iwai K, de Silva AP (2008) Angew Chem Int Ed 47:4667–4669

    Article  CAS  Google Scholar 

  16. Coyle LM, Gouterman M (1999) Sens Actuators B61:92–99

    CAS  Google Scholar 

  17. Koese ME, Omar A, Virgin CA, Carroll BF, Schanze KS (2005) Langmuir 21:9110–9120

    Article  CAS  Google Scholar 

  18. Borisov SM, Krause C, Arain S, Wolfbeis OS (2006) Adv Mat 18:1511–1516

    Article  CAS  Google Scholar 

  19. Schroeder CR, Neurauter G, Klimant I (2007) Microchim Acta 158:205–218

    Article  CAS  Google Scholar 

  20. Nagl S, Wolfbeis OS (2007) Analyst 132:507–511

    Article  CAS  Google Scholar 

  21. Woods RJ, Scypinski S, Love LJC, Ashworth HA (1984) Anal Chem 56:1395–1400

    Article  CAS  Google Scholar 

  22. Sharman KK, Periasamy A, Ashworth H, Demas JN, Snow NH (1999) Anal Chem 71:947–952

    Article  CAS  Google Scholar 

  23. Ballew RM, Demas JN (1989) Anal Chem 61:30–33

    Article  CAS  Google Scholar 

  24. Wu Z, Lin M, Schaeferling M, Duerkop A, Wolfbeis OS (2005) Anal Biochem 340:66–73

    Article  CAS  Google Scholar 

  25. Schaeferling M, Wu M, Enderlein J, Bauer H, Wolfbeis OS (2003) Appl Spectrosc 57:1386–1392

    Article  CAS  Google Scholar 

  26. Moore C, Chan SP, Demas JN, DeGraff BA (2004) Appl Spectrosc 58:603–607

    Article  Google Scholar 

  27. Hradil J, Davis C, Mongey K, McDonagh C, MacCraith BD (2002) Meas Sci Technol 13:1552–1557

    Article  CAS  Google Scholar 

  28. Stich MIJ, Nagl S, Wolfbeis OS, Henne U, Schaeferling M (2008) Adv Funct Mater 18:1399–1406

    Article  CAS  Google Scholar 

  29. Yang C, Fu LM, Wang Y, Zhang JP, Wong WT, Ai XC, Qiao YF, Zou BS, Gui LL (2004) Angew Chem Int Ed 43:5009–5013

    Google Scholar 

  30. Borisov SM, Wolfbeis OS (2006) Anal Chem 78:5094–5101

    Article  CAS  Google Scholar 

  31. Nagl S, Baleizão C, Borisov SM, Schaeferling M, Berberan-Santos MN, Wolfbeis OS (2007) Angew Chem Int Ed 46:2317–2319

    Article  CAS  Google Scholar 

  32. Richardson FS (1982) Chem Rev 82:541–552

    Article  CAS  Google Scholar 

  33. Reifernberger JG, Ge P, Selvin PR (2005) Rev Fluoresc 23:99–431

    Google Scholar 

  34. Hemmilae I, Laitala V (2005) J Fluoresc 15:529–542

    Article  CAS  Google Scholar 

  35. Lee S, Okura I (1997) Anal Comm 34:185–188

    Article  CAS  Google Scholar 

  36. Bizzarri A Koehler H, Cajlakovic M, Pasic A, Schaupp L, Klimant I, Ribitsch V (2006) Anal Chim Acta 573–574:48–56

    Article  Google Scholar 

  37. Amao Y (2003) Microchim Acta 143:1–12 (review)

    Article  CAS  Google Scholar 

  38. Choi MMF (2004) Microchim Acta 148:107–132 (review)

    Article  CAS  Google Scholar 

  39. Liebsch G, Klimant I, Wolfbeis OS (1999) Adv Mater 11:1296–1299

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto S. Wolfbeis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagl, S., Stich, M.I.J., Schäferling, M. et al. Method for simultaneous luminescence sensing of two species using optical probes of different decay time, and its application to an enzymatic reaction at varying temperature. Anal Bioanal Chem 393, 1199–1207 (2009). https://doi.org/10.1007/s00216-008-2467-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2467-0

Keywords

Navigation