Skip to main content
Log in

Enzyme-functionalized mesoporous silica for bioanalytical applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The unique properties of mesoporous silica materials (MPs) have attracted substantial interest for use as enzyme-immobilization matrices. These features include high surface area, chemical, thermal, and mechanical stability, highly uniform pore distribution and tunable pore size, high adsorption capacity, and an ordered porous network for free diffusion of substrates and reaction products. Research demonstrated that enzymes encapsulated or entrapped in MPs retain their biocatalytic activity and are more stable than enzymes in solution. This review discusses recent advances in the study and use of mesoporous silica for enzyme immobilization and application in biosensor technology. Different types of MPs, their morphological and structural characteristics, and strategies used for their functionalization with enzymes are discussed. Finally, prospective and potential benefits of these materials for bioanalytical applications and biosensor technology are also presented.

Enzyme-functionalized mesoporous silica fibers and their integration in a biosensor design. The immobilization process takes place essentially in the silica micropores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hartmann M (2005) Chem Mater 17:4577–4593

    Article  CAS  Google Scholar 

  2. Lee C-H, Lang J, Yen C-W, Shih P-C, Lin T-S, Mou C-Y (2005) J Phys Chem B 109:12277–12286

    Article  CAS  Google Scholar 

  3. Kresge CT, Leonowicz M, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712

    Article  CAS  Google Scholar 

  4. Johansson E, Zink JI (2007) J Am Chem Soc 129:14437–14443

    Article  CAS  Google Scholar 

  5. Ozin GA, Khushalani D, Oliver S, Shen GC, Sokolov IYu, Yang H (1997) J Chem Soc Dalton Trans 3941–3952

  6. Yang M, Sokolov IYu, Coombs N, Kresge CT, Ozin GA (1999) Adv Mater 11:1427–1431

    Article  CAS  Google Scholar 

  7. Sokolov IYu, Ozin GA, Henderson GS, Yang H, Coombs N (1997) Adv Mater 9:917–921

    Article  CAS  Google Scholar 

  8. Everett DH (1994) Basic principles of colloid science. Royal Society of Chemistry, Cambridge

    Google Scholar 

  9. Evans DF, Wennerstrom H (1994) The colloids domain where physics, chemistry, biology, and technology meet. VCH, New York

    Google Scholar 

  10. Melosh NA, Davidson P, Chmelka BF (2000) J Am Chem Soc 122:823–829

    Article  CAS  Google Scholar 

  11. Yang H, Coombs N, Sokolov IYu, Ozin GA (1996) Nature 381:589–592

    Article  CAS  Google Scholar 

  12. Suzuki TM, Nakamura T, Fukumoto K, Yamamoto M, Akimoto Y, Yano K (2008) J Mol Catal A 280:224–232

    Article  CAS  Google Scholar 

  13. Kim JH, Yoon SB, Kim JY, Chae YB, Yu JS (2008) Colloids Surf A 313:77–81

    Article  Google Scholar 

  14. Yang H, Coombs N, Sokolov IYu, Ozin, GA (1997) J Mater Chem 7:1285–1290

    Article  CAS  Google Scholar 

  15. Calvert JM, Chandoross EA, Malloul TE (1997) Supramol Sci 4:1–23

    Article  Google Scholar 

  16. Bolterauer H, Limbach H-J, Tuszynski JA (1999) J Biol Phys 25:1–22

    Article  CAS  Google Scholar 

  17. Schmidt-Winkel P, Yang P, Margolese DI, Chmelka BF, Stucky GD (1999) Adv Mater 11:303–307

    Article  CAS  Google Scholar 

  18. Zhao D, Yang P, Chmelka BF, Stucky GD (1999) Chem Mater 11:1174–1178

    Article  CAS  Google Scholar 

  19. El-Safty SA (2008) J Colloid Interface Sci 319:477–488

    Article  CAS  Google Scholar 

  20. Lei C, Shin Y, Liu S, Ackerman EJ (2007) Nano Lett 7:1050–1053

    Article  CAS  Google Scholar 

  21. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2001) Micro Meso Mat 44/45:755–762

    Article  Google Scholar 

  22. Yang X-Y, Li Z-Q, Liu B, Klein-Hofmann A, Tian G, Feng Y-F, Ding Y, Su D, Xiao F-S (2006) Adv Mater 18:410–414

    Article  CAS  Google Scholar 

  23. Diaz JF, Balkus K Jr (1996) J Mol Catal B 2:115–126

    Article  CAS  Google Scholar 

  24. Hudson S, Magner E, Cooney J, Hodnett BK (2005) J Phys Chem B 109:19496–19506

    Article  CAS  Google Scholar 

  25. Tan B, Lehmler HJ, Vyas SM, Knutson BL, Rankin SE (2005) Nanotechnology 16:S502–S507

    Article  Google Scholar 

  26. Kim TW, Kleitz F, Paul B, Ryoo R (2005) J Am Chem Soc 127:7601–7610

    Article  CAS  Google Scholar 

  27. Hamoudi S, Belkacemi K (2004) J Porous Mater 11:47–54

    Article  CAS  Google Scholar 

  28. Matos JR, Mercuri LP, Kruk M, Jaroniec M (2001) Chem Mater 13:1726–1731

    Article  CAS  Google Scholar 

  29. Lei C, Shin Y, Liu S, Ackerman EJ (2002) J Am Chem Soc 124:11242–11243

    Article  CAS  Google Scholar 

  30. Dunker AK, Fernandez A (2007) Trends Biotechnol 25:189–190

    Article  CAS  Google Scholar 

  31. Ehrburger-Dolle F, Morfin I, Geissler E, Bley F, Livet F, Vix-Guterl C, Saadallah S, Parmentier J, Reda M, Patarin J, Iliescu M, Werckmann J (2003) Langmuir 19:4303–4308

    Article  CAS  Google Scholar 

  32. Ryoo R, Ko CH, Kruk M, Antochshuk V, Jaroniec M (2000) J Phys Chem B 104:11465–11471

    Article  CAS  Google Scholar 

  33. Yiu HHP, Wright PA (2005) J Mater Chem 15:3690–3700

    Article  CAS  Google Scholar 

  34. Blanco RM, Terreros P, Fernandez-Perez M, Otero C, Diaz- Gonzalez G (2004) J Mol Catal B 30:83–93

    Article  CAS  Google Scholar 

  35. Vinu A, Murugesan V, Tangermann O, Hartmann M (2004) Chem Mater 16:3056–3065

    Article  CAS  Google Scholar 

  36. Wang Y, Caruso F (2004) Chem Commun 1528–1529

  37. Wang Y, Caruso F (2005) Chem Mater 17:953–961

    Article  CAS  Google Scholar 

  38. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  39. Inagaki S, Fukushima Y, Kuroda K (1993) Chem Commun 680–682

  40. Kruk M, Jaroniec M, Ko CH, Ryoo R (2000) Chem Mater 12:1961–1968

    Article  CAS  Google Scholar 

  41. Jana SK, Nishida R, Shindo K, Kugita T, Namba S (2004) Micropor Mesopor Mater 68:133–142

    Article  CAS  Google Scholar 

  42. Matos JR, Kruk M, Mercuri LP, Jaroniec M, Zhao L, Kamiyama T, Terasaki O, Pinnavaia TJ, Liu Y (2003) J Am Chem Soc 125:821–829

    Article  CAS  Google Scholar 

  43. Lim MH, Stein A (1999) Chem Mater 11:3285–3295

    Article  CAS  Google Scholar 

  44. Zhang X, Guan R-F, Wu D-Q, Chan K-Y (2005) J Mol Catal B 33:43–50

    Article  Google Scholar 

  45. Han L, Sakamoto Y, Terasaki O, Li Y, Che S (2007) J Mater Chem 17:1216–1221

    Article  CAS  Google Scholar 

  46. Sujandi Park S-E, Han D-S, Han S-C, Jin M-J, Ohsuna T (2006) Chem Commun 4131–4133

  47. Stein A, Melde BJ, Schroden RC (2000) Adv Mater 12:1403–1419

    Article  CAS  Google Scholar 

  48. Price PM, Clark JH, Macquarrie DJ (2000) J Chem Soc, Dalton Trans 101–110

  49. Macquarrie DJ, Jackson DB, Mdoe JEG, Clark JH (1999) New J Chem 23:539–544

    Article  CAS  Google Scholar 

  50. Gadre SY, Gouma PI (2006) J Am Ceram Soc 89:2987–3308

    Article  CAS  Google Scholar 

  51. Zhou HX (2004) J Mol Recognit 17:368–375

    Article  CAS  Google Scholar 

  52. Lee CH, Lang J, Yen CW, Shih PC, Lin TS, Mou CY (2005) Phys Chem B, 109:12277–12286

    Article  CAS  Google Scholar 

  53. Vinu A, Mori T, Ariga K (2006) Sci Technol Adv Mater 7:753–771

    Article  CAS  Google Scholar 

  54. He J, Song Z, Ma H, Yang L, Guo C (2006) J Mater Chem 16:4307–4315

    Article  CAS  Google Scholar 

  55. Washmon-Kriel L, Jimenez VL, Balkus KJ Jr (2000) J Mol Catal B 10:453–469

    Article  CAS  Google Scholar 

  56. Han Y, Lee SS, Ying JY (2006) Chem Mater 18:643–649

    Article  CAS  Google Scholar 

  57. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Chem Int Ed 45:3216–3251

    Article  CAS  Google Scholar 

  58. Ozin GA, Arsenault A (2005) Nanochemistry: a chemical approach to nanomaterials. Royal Society of Chemistry

  59. Liu J, Li C, Yang Q, Yang J, Li C (2007) Langmuir 23:7255–7262

    Article  CAS  Google Scholar 

  60. Sokolov I, Kievsky Y (2005) Stud Surf Sci Catal 56:33–443

    Google Scholar 

  61. Wang B, Shan W, Zhang YH, Xia JC, Yang WL, Gao Z, Tang Y (2005) Adv Mater 17:578–582

    Article  CAS  Google Scholar 

  62. Sokolov I, Kievsky Y, Kaszpurenko JM (2007) Small 3:419–423

    Article  CAS  Google Scholar 

  63. Naik SP, Elangovan SP, Okubo T, Sokolov I (2007) J Phys Chem C 111:11168–11173

    Article  CAS  Google Scholar 

  64. Kievsky Y, Sokolov I (2005) IEEE T Nanotechnol 4:490–494

    Article  Google Scholar 

  65. Zhao DY, Sun JY, Li QZ, Stucky GD (2000) Chem Mater 12:275–279

    Article  CAS  Google Scholar 

  66. Vinu A, Murugesan V, Hartmann M (2004) J Phys Chem B 108:7323–7330

    Article  CAS  Google Scholar 

  67. Urabe Y, Shiomi T, Itoh T, Kawai A, Tsunoda T, Mizukami F, Sakaguchi K (2007) Chem Bio Chem 8:668–674

    CAS  Google Scholar 

  68. Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2000) Chem Mater 12:3301–3305

    Article  CAS  Google Scholar 

  69. Deere J, Magner E, Wall JG, Hodnett BK (2002) J Phys Chem B 106:7340–7347

    Article  CAS  Google Scholar 

  70. Zhang L, Sun T, Ying JY (1999) Chem Commun 1103–1104

  71. Sun J, Zhang, H, Tian R, Ma D, Bao X, Su D, S, Zou H (2006) Chem Commun 1322–1324

  72. Wahab MA, Imae I, Kawakami Y, Ha C-H (2005) Chem Mater 17:2165–2174

    Article  CAS  Google Scholar 

  73. Hudson S, Cooney J, Hodnett BK, Magner E (2007) Chem Mater 19:2049–2055

    Article  CAS  Google Scholar 

  74. Zhang L, Sun T, Ying JY (1999) Chem Commun 1103–1104

  75. He J, Li X, Evans DG, Duan X, Li C (2000) J Mol Catal B 11:45–53

    Article  Google Scholar 

  76. Wang P, Dai S, Waezsada SD, Tsao AY, Davison BH (2001) Biotechnol Bioeng 74:249–255

    Article  CAS  Google Scholar 

  77. Bai Y, Yang H, Yang W, Li Y, Sun C (2007) Sens Actuators B 124:179–186

    Article  Google Scholar 

  78. Zhu Y, Kaskel S, Shi J, Wage T, van Pée K (2007) Chem Mater 19:6408–6413

    Article  CAS  Google Scholar 

  79. Lee J, Kim J, Kim J, Jia H, Kim MI, Kwak JH, Jin S, Dohnalkova A, Park HG, Chang HN, Wang P, Grate JW, Hyeon T (2005) Small 1:744–753

    Article  CAS  Google Scholar 

  80. Chan WCW, Nie SM (1998) Science 281:2016–2021

    Article  CAS  Google Scholar 

  81. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297:787–792

    Article  CAS  Google Scholar 

  82. Rubianes MD, Rivas GA (2003) Electrochem Commun 5:689–694

    Article  CAS  Google Scholar 

  83. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chem Eur J 9:3732–3739

    Article  CAS  Google Scholar 

  84. Li YG, Zhou YX, Feng JL, Jiang ZH, Ma LR (1999) Anal Chim Acta 382:277–282

    Article  CAS  Google Scholar 

  85. Anderson JET, Olesen KG, Danilov AI, Foverskov CE, Moller P, Ulstrup J (1997) Bioelectrochem Bioenerg 44:57–63

    Article  Google Scholar 

  86. Rippeth JJ, Gibson TD, Hart JP, Hartley IC, Nelson G (1997) Analyst 122:1425–1429

    Article  CAS  Google Scholar 

  87. Palmisano F, De Benedetto GE, Zambonin CG (1997) Analyst 122:365–369

    Article  CAS  Google Scholar 

  88. Andreescu S, Barthelmebs L, Marty JL (2002) Anal Chim Acta 464:171–180

    Article  CAS  Google Scholar 

  89. Hench LL, West JK (1990) Chem Rev 90:33–79

    Article  CAS  Google Scholar 

  90. Dave BC, Dunn B, Valentine JS, Zink JI (1994) Anal Chem 66:1120A–1127A

    Article  CAS  Google Scholar 

  91. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605–1614

    Article  CAS  Google Scholar 

  92. Oda I, Hirata K, Watanabe S, Shibata Y, Kajino T, Fukushima Y, Iwai S, Itoh S (2006) J Phys Chem B 110:1114–1120

    Article  CAS  Google Scholar 

  93. Dai Z, Ju H, Chen H (2005) Electroanalysis 17:862–868

    Article  CAS  Google Scholar 

  94. Xian Y, Xian Y, Zhou L, Wu F, Ling Y, Jin L (2007) Electrochem Commun 9:142–148

    Article  CAS  Google Scholar 

  95. Dai Z, Liu S, Ju H, Chen H (2004) Biosens Bioelectron 19:861–867

    Article  CAS  Google Scholar 

  96. Dai Z, Xu X, Ju H (2004) Anal Biochem 332:23–31

    Article  CAS  Google Scholar 

  97. Wu S, Ju H, Liu Y (2007) Adv Funct Mater 17:585–892

    Article  CAS  Google Scholar 

  98. Vamvakaki V, Chaniotakis NA (2007) Biosens Bioelectron 22:2650–2655

    Article  CAS  Google Scholar 

  99. Dai Z, Xu X, Wu L, Ju H (2005) Electroanalysis 17:1571–1577

    Article  CAS  Google Scholar 

  100. Dai Z, Xu X, Wu L, Ju H (2005) Electroanalysis 17:1571

    Article  CAS  Google Scholar 

  101. Lei C, Valenta MM, Saripalli KP, Ackerman EJ (2007) J Environ Qual 36:233–238

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grants NSF 0804506, NSF 0727861, USDA-PU 8000019748-01 and USAR W911WF-05-1-0339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Andreescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ispas, C., Sokolov, I. & Andreescu, S. Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem 393, 543–554 (2009). https://doi.org/10.1007/s00216-008-2250-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2250-2

Keywords

Navigation