Skip to main content
Log in

Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A study is performed to evaluate the occurrence of arsenic in polluted soils using acidic extractions and liquid chromatography–hydride generation–atomic fluorescence spectrometry (LC–HG–AFS) for speciation analysis. Seven soil samples were collected in an abandoned area polluted by mining in the Eastern Pyrenees (Spain), and two uncontaminated soils were taken for reference purposes. Moreover, the total arsenic content is evaluated in two different sieved fractions in order to obtain information on the possible particle-size-dependent association of arsenic with soil components. Soil samples were extracted with both phosphoric and ascorbic acids and the stabilities of the extracted species were studied. The arsenic species were determined by LC–HG–AFS. In addition, the ability of soil grinding to effect species change is also assessed. Arsenite and arsenate were found in the polluted soils, but only arsenate was found in the unpolluted soils. The quality of the results was assessed through a mass balance calculation and by analysing two soil Certified Reference Materials. Valuable information regarding arsenic occurrence in the studied soils is obtained from the speciation results. The presence of arsenite in the extracts can be attributed to arsenopyrite residues, whereas the presence of arsenate indicates release from weathered material.

Abandoned mining polluted area in Eastern Pyrenees

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 a–c
Fig. 3 a, b
Fig. 4 a, b

Similar content being viewed by others

References

  1. Cullen WR, Reimer KJ (1989) Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  2. Mandal BK, Suzuki KT (2002) Talanta 58:201–235

    Article  CAS  Google Scholar 

  3. Yehl PM, Gurleyuk H, Tyson JF, Uden PC (2001) Analyst 126:1511–1518

    Google Scholar 

  4. Melamed D (2004) Monitoring arsenic in the environment. A review of science and technologies for field measurements and sensors (EPA 542/R–04/002). US EPA, Washington, DC (see http://www.epa.gov/tio/download/char/arsenic_paper.pdf, last accessed 4th November 2006)

  5. Garcia-Manyes S, Jiménez G, Padró A, Rubio R, Rauret G (2002) Talanta 58:97–109

    Article  CAS  Google Scholar 

  6. Bissen M, Frimmel FH (2000) Fresenius J Anal Chem 367:51–55

    Article  CAS  Google Scholar 

  7. Pongratz R (1998) Sci Total Environ 224:133–141

    Article  CAS  Google Scholar 

  8. Koellensperger G, Nurmi J, Hann S, Stingeder G, Fitz WJ, Wenzel WW (2002) J Anal Atom Spectrom 17:1042–1047

    Article  CAS  Google Scholar 

  9. Guerin T, Molenat N, Astruc A, Pinel R (2000) Appl Organomet Chem 14:401–410

    Article  CAS  Google Scholar 

  10. Thomas P, Finnie JK, Williams JG (1997) J Anal Atom Spectrom 12:1367–1372

    CAS  Google Scholar 

  11. Vergara-Gallardo M, Bohari Y, Astruc A, Poitin-Gaultier M, Astruc M (2001) Anal Chim Acta 441:257–268

    Article  Google Scholar 

  12. Montperrus M, Bohari Y, Bueno M, Astruc A, Astruc M (2002) Appl Organomet Chem 16:347–354

    Article  CAS  Google Scholar 

  13. Ruiz-Chancho MJ, Sabé R, López-Sánchez JF, Rubio R, Thomas P (2005) Microchim Acta 151:241–248

    Article  CAS  Google Scholar 

  14. Pizarro I, Gómez M, Cámara C, Palacios MA (2003) Anal Chim Acta 495:85–98

    Article  CAS  Google Scholar 

  15. Pantsar-Kallio M, Manninen PKG (1997) Sci Total Environ 204:193–200

    Article  CAS  Google Scholar 

  16. Manning BA, Martens DA (1997) Environ Sci Technol 31:171–177

    Article  CAS  Google Scholar 

  17. Gómez-Ariza JL, Sánchez-Rodas D, Giráldez I (1998) J Anal Atom Spectrom 13:1375–1379

    Article  Google Scholar 

  18. Caballo-López A, Luque de Castro MD (2003) Anal Chem 75:2011–2017

    Article  CAS  Google Scholar 

  19. Kahakachchi C, Uden PC, Tyson JF (2004) Analyst 129:714–718

    Article  CAS  Google Scholar 

  20. Demesmay C, Ollé M (1997) Fresenius J Anal Chem 357:1116–1121

    Article  CAS  Google Scholar 

  21. Ayora C, Phillips R (1981) Bull Mineral 104:556–564

    CAS  Google Scholar 

  22. Ayora C, Casas JM (1986) Mineral Deposita 21:278–287

    Article  CAS  Google Scholar 

  23. Ayora C (1980) Les concentracions metalliques de la Vall de Ribes. Thesis, University of Barcelona, Barcelona, Spain

  24. Santanach P (1972) Estudio tectónico del Paleozoico inferior del Pirineo entre la Cerdanya y el rio Ter. Thesis, University of Barcelona, Barcelona, Spain

  25. ISO (1995) ISO10694: Soil quality, determination of organic and total carbon after dry combustion (elementary analysis). International Organization for Standardization (ISO), Geneva, Switzerland

  26. ISO (1995) ISO11466: Extraction of trace elements soluble in aqua regia (international standard). International Organization for Standardization (ISO), Geneva, Switzerland

  27. Department of Agriculture (1986) Spanish official analytical methods for soils, vol 3. Department of Agriculture, Madrid

  28. McGrath S T, Zhao F, Blake-Kalff M (2002) Sulfur in soils: processes, behaviour and measurement (from Proc Int Fertilizer Soc). The International Fertilizer Society, York, UK, p 499

  29. Jones CA, Inskeep WP, Neuman DR (1997) J Environ Qual 26:433–439

    Article  CAS  Google Scholar 

  30. Sadiq M (1997) Water Air Soil Pollut 93:117–136

    CAS  Google Scholar 

  31. Dove PM, Rimstidt JD (1985) Am Mineral 70:838–844

    CAS  Google Scholar 

  32. Garcia-Sánchez A, Alvarez-Ayuso E (2003) J Geochem Explor 80:69–79

    Article  CAS  Google Scholar 

  33. Yumnei Y, Yongxuan Z, Williams-Jones A E, Zhenmin G, Dexian L (2004) Appl Geochem 19:435–444

    Article  CAS  Google Scholar 

  34. Francesconi KA, Huehnelt D (2004) Analyst 129:373–395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DGICYT (Project number BQU2003-02951) for the financial help received in support of this study; C. Ayora and J. Cama (Institut de Ciencies de la Terra “Jaume Almera”-CSIC) for their invaluable support in sampling and their help in the interpretation of the electron microprobe analysis; and R. Miravet (Departament de Química Analítica, Universitat de Barcelona) for his help with sample pretreatment. M.J. Ruiz-Chancho wishes to thank the Universitat de Barcelona for their support, provided through a predoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rubio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-Chancho, M.J., López-Sánchez, J.F. & Rubio, R. Analytical speciation as a tool to assess arsenic behaviour in soils polluted by mining. Anal Bioanal Chem 387, 627–635 (2007). https://doi.org/10.1007/s00216-006-0939-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0939-7

Keywords

Navigation