Skip to main content
Log in

New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacteria use small signal molecules, referred to as autoinducers, in order to monitor their population density and coordinate gene expression in a process named quorum sensing. In Gram-negative bacteria, acylated homoserine lactones are the most common autoinducer used for cell-to-cell communication. Increasing evidence that many different functions are controlled by acylated homoserine lactone quorum sensing has stimulated intensive investigations into the physiology, molecular biology and biochemistry that underlie this process. Here we review our current understanding of the molecular mechanisms used by the transcriptional regulators responsive to acylated homoserine lactone autoinducers to control gene expression and the structural modifications induced by acylated homoserine lactones binding specifically on these regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–c
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fuqua C, Parsek MR, Greenberg EP (2001) Annu Rev Genet 35:439–468

    Article  CAS  Google Scholar 

  2. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) FEMS Microbiol Rev 25(4):365–404

    Article  CAS  Google Scholar 

  3. Lyon GJ, Novick RP (2004) Peptides 25(9):1389–1403

    Article  CAS  Google Scholar 

  4. Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR (2005) Nat Rev Microbiol 3(5):383–396

    Article  CAS  Google Scholar 

  5. Nealson KH, Hastings JW (1979) Microbiol Rev 43(4):496–518

    CAS  Google Scholar 

  6. Kaplan HB, Greenberg EP (1985) J Bacteriol 163(3):1210–1214

    CAS  Google Scholar 

  7. Lerat E, Moran NA (2004) Mol Biol Evol 21(5):903–913

    Article  CAS  Google Scholar 

  8. Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Proc Natl Acad Sci USA 93(18):9505–9509

    Article  CAS  Google Scholar 

  9. Parsek MR, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1999) Proc Natl Acad Sci USA 96(8):4360–4365

    Article  CAS  Google Scholar 

  10. More MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Science 272(5268):1655–1658

    Article  CAS  Google Scholar 

  11. Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill ME (2002) Mol Cell 9(3):685–694

    Article  CAS  Google Scholar 

  12. Gould TA, Schweizer HP, Churchill ME (2004) Mol Microbiol 53(4):1135–1146

    Article  CAS  Google Scholar 

  13. Gilson L, Kuo A, Dunlap PV (1995) J Bacteriol 177(23):6946–6951

    CAS  Google Scholar 

  14. Bassler BL, Wright M, Silverman MR (1994) Mol Microbiol 13(2):273–286

    Article  CAS  Google Scholar 

  15. Milton DL, Chalker VJ, Kirke D, Hardman A, Camara M, Williams P (2001) J Bacteriol 183(12):3537–3547

    Article  CAS  Google Scholar 

  16. Hanzelka BL, Parsek MR, Val DL, Dunlap PV, Cronan JE Jr, Greenberg EP (1999) J Bacteriol 181(18):5766–5770

    CAS  Google Scholar 

  17. Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GS, Hardman A, Downie JA, O’Gara F, Williams P (2000) Microbiology 146(10):2469–2480

    Google Scholar 

  18. Qin Y, Luo ZQ, Smyth AJ, Gao P, Beck von Bodman S, Farrand SK (2000) EMBO J 19(19):5212–5221

    Article  CAS  Google Scholar 

  19. Urbanowski ML, Lostroh CP, Greenberg EP (2004) J Bacteriol 186(3):631–637

    Article  CAS  Google Scholar 

  20. Zhu J, Winans SC (2001) Proc Natl Acad Sci USA 98(4):1507–1512

    Article  CAS  Google Scholar 

  21. Schuster M, Urbanowski ML, Greenberg EP (2004) Proc Natl Acad Sci USA 101(45):15833–15839

    Article  CAS  Google Scholar 

  22. Kiratisin P, Tucker KD, Passador L (2002) J Bacteriol 184(17):4912–4919

    Article  CAS  Google Scholar 

  23. Minogue TD, Wehland-von Trebra M, Bernhard F, von Bodman SB (2002) Mol Microbiol 44(6):1625–1635

    Article  CAS  Google Scholar 

  24. Horng YT, Deng SC, Daykin M, Soo PC, Wei JR, Luh KT, Ho SW, Swift S, Lai HC, Williams P (2002) Mol Microbiol 45(6):1655–1671

    Article  CAS  Google Scholar 

  25. Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Mol Microbiol 29(6):1391–1405

    Article  CAS  Google Scholar 

  26. Reverchon S, Bouillant ML, Salmond G, Nasser W (1998) Mol Microbiol 29(6):1407–1418

    Article  CAS  Google Scholar 

  27. Atkinson S, Throup JP, Stewart GS, Williams P (1999) Mol Microbiol 33(6):1267–1277

    Article  CAS  Google Scholar 

  28. Castang S, Reverchon S, Gouet P, Nasser W (2006) J Biol Chem (in press)

  29. Burr T, Barnard AM, Corbett MJ, Pemberton CL, Simpson NJ, Salmond GP (2006) Mol Microbiol 59(1):113–125

    Article  CAS  Google Scholar 

  30. von Bodman SB, Majerczak DR, Coplin DL (1998) Proc Natl Acad Sci USA 95(13):7687–7692

    Article  Google Scholar 

  31. Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB (2006) Proc Natl Acad Sci USA 103(15):5983–5988

    Article  CAS  Google Scholar 

  32. Welch M, Todd DE, Whitehead NA, McGowan SJ, Bycroft BW, Salmond GP (2000) EMBO J 19(4):631–641

    Article  CAS  Google Scholar 

  33. Zhang RG, Pappas T, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002) Nature 417(6892):971–974

    Article  CAS  Google Scholar 

  34. Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P, Marco SD (2002) EMBO J 21(17):4393–4401

    Article  CAS  Google Scholar 

  35. Yao Y, Martinez-Yamout MA, Dickerson TJ, Brogan AP, Wright PE, Dyson HJ (2006) J Mol Biol 355(2):262–273

    Article  CAS  Google Scholar 

  36. Chai Y, Winans SC (2004) Mol Microbiol 51(3):765–776

    Article  CAS  Google Scholar 

  37. Pappas KM, Winans SC (2003) Mol Microbiol 48(4):1059–1073

    Article  CAS  Google Scholar 

  38. White CE, Winans SC (2005) Mol Microbiol 55(5):1473–1486

    Article  CAS  Google Scholar 

  39. Finney AH, Blick RJ, Murakami K, Ishihama A, Stevens AM (2002) J Bacteriol 184(16):4520–4528

    Article  CAS  Google Scholar 

  40. Lamb JR, Patel H, Montminy T, Wagner VE, Iglewski BH (2003) J Bacteriol 185(24):7129–7139

    Article  CAS  Google Scholar 

  41. Eberhard A, Widrig CA, McBath P, Schineller JB (1986) Arch Microbiol 146(1):35–40

    Article  CAS  Google Scholar 

  42. Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP (1996) J Bacteriol 178(10):2897–2901

    CAS  Google Scholar 

  43. Zhu J, Beaber JW, More MI, Fuqua C, Eberhard A, Winans SC (1998) J Bacteriol 180(20):5398–5405

    CAS  Google Scholar 

  44. Passador L, Tucker KD, Guertin KR, Journet MP, Kende AS, Iglewski BH (1996) J Bacteriol 178(20):5995–6000

    CAS  Google Scholar 

  45. Persson T, Hansen TH, Rasmussen TB, Skinderso ME, Givskov M, Nielsen J (2005) Org Biomol Chem 3(2):253–262

    Article  CAS  Google Scholar 

  46. Chhabra SR, Harty C, Hooi DS, Daykin M, Williams P, Telford G, Pritchard DI, Bycroft BW (2003) J Med Chem 46(1):97–104

    Article  CAS  Google Scholar 

  47. Welch M, Dutton JM, Glansdorp FG, Thomas GL, Smith DS, Coulthurst SJ, Barnard AM, Salmond GP, Spring DR (2005) Bioorg Med Chem Lett 15(19):4235–4238

    Article  CAS  Google Scholar 

  48. Smith KM, Bu Y, Suga H (2003) Chem Biol 10(1):81–89

    Article  CAS  Google Scholar 

  49. Jog GJ, Igarashi J, Suga H (2006) Chem Biol 13(2):123–128

    Article  CAS  Google Scholar 

  50. Olsen JA, Severinsen R, Rasmussen TB, Hentzer M, Givskov M, Nielsen J (2002) Bioorg Med Chem Lett 12(3):325–328

    Article  CAS  Google Scholar 

  51. Reverchon S, Chantegrel B, Deshayes C, Doutheau A, Cotte-Pattat N (2002) Bioorg Med Chem Lett 12(8):1153–1157

    Article  CAS  Google Scholar 

  52. Castang S, Chantegrel B, Deshayes C, Dolmazon R, Gouet P, Haser R, Reverchon S, Nasser W, Hugouvieux-Cotte-Pattat N, Doutheau A (2004) Bioorg Med Chem Lett 14(20):5145–5149

    Article  CAS  Google Scholar 

  53. Frezza M, Castang S, Estephane J, Soulere L, Deshayes C, Chantegrel B, Nasser W, Queneau Y, Reverchon S, Doutheau A (2006) Bioorg Med Chem 14(14):4781–4791

    Google Scholar 

  54. Choi SH, Greenberg EP (1991) Proc Natl Acad Sci USA 88(24):11115–11119

    Article  CAS  Google Scholar 

  55. Luo ZQ, Farrand SK (1999) Proc Natl Acad Sci USA 96(16):9009–9014

    Article  CAS  Google Scholar 

  56. McDowell P, Affas Z, Reynolds C, Holden MT, Wood SJ, Saint S, Cockayne A, Hill PJ, Dodd CE, Bycroft BW, Chan WC, Williams P (2001) Mol Microbiol 41(2):503–512

    Article  CAS  Google Scholar 

  57. Sitnikov DM, Shadel GS, Baldwin TO (1996) Mol Gen Genet 252(5):622–625

    CAS  Google Scholar 

  58. Poellinger KA, Lee JP, Parales JV Jr, Greenberg EP (1995) FEMS Microbiol Lett 129(1):97–101

    CAS  Google Scholar 

  59. Egland KA, Greenberg EP (1999) Mol Microbiol 31(4):1197–1204

    Article  CAS  Google Scholar 

  60. Gray KM, Passador L, Iglewski BH, Greenberg EP (1994) J Bacteriol 176(10):3076–3080

    CAS  Google Scholar 

  61. Lee JH, Lequette Y, Greenberg EP (2006) Mol Microbiol 59(2):602–609

    Article  CAS  Google Scholar 

  62. Zhu J, Winans SC (1999) Proc Natl Acad Sci USA 96(9):4832–4837

    Article  CAS  Google Scholar 

  63. Weingart CL, White CE, Liu S, Chai Y, Cho H, Tsai CS, Wei Y, Delay NR, Gronquist MR, Eberhard A, Winans SC (2005) Mol Microbiol 57(2):452–467

    Article  CAS  Google Scholar 

  64. Busby S, Ebright RH (1999) J Mol Biol 293(2):199–213

    Article  CAS  Google Scholar 

  65. Rhodius VA, Busby SJ (1998) Curr Opin Microbiol 1(2):152–159

    Article  CAS  Google Scholar 

  66. Johnson DC, Ishihama A, Stevens AM (2003) FEMS Microbiol Lett 228(2):193–201

    Article  CAS  Google Scholar 

  67. Stevens AM, Dolan KM, Greenberg EP (1994) Proc Natl Acad Sci USA 91(26):12619–12623

    Article  CAS  Google Scholar 

  68. Stevens AM, Fujita N, Ishihama A, Greenberg EP (1999) J Bacteriol 181(15):4704–4707

    CAS  Google Scholar 

  69. Egland KA, Greenberg EP (2001) J Bacteriol 183(1):382–386

    Article  CAS  Google Scholar 

  70. Qin Y, Luo ZQ, Farrand SK (2004) J Biol Chem 279(39):40844–40851

    Article  CAS  Google Scholar 

  71. Lazdunski AM, Ventre I, Sturgis JN (2004) Nat Rev Microbiol 2(7):581–592

    Article  CAS  Google Scholar 

  72. Minogue TD, Carlier AL, Koutsoudis MD, von Bodman SB (2005) Mol Microbiol 56(1):189–203

    Article  CAS  Google Scholar 

  73. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) Bioinformatics 15(4):305–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. Buchet, G. Condemine and V. James for critically reading the manuscript and S. Castang and P. Gouet for assistance with graphics. We are grateful to A. Doutheau and L. Soulère for many discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Nasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasser, W., Reverchon, S. New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators. Anal Bioanal Chem 387, 381–390 (2007). https://doi.org/10.1007/s00216-006-0702-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0702-0

Keywords

Navigation