Skip to main content
Log in

A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Intelligent and automatic systems based on arrays of non-specific-response chemical sensors were recently developed in our laboratory. For multidetermination applications, the normal choice is an array of potentiometric sensors to generate the signal, and an artificial neural network (ANN) correctly trained to obtain the calibration model. As a great amount of information is required for the proper modelling, we proposed its automated generation by using the sequential injection analysis (SIA) technique. First signals used were steady-state: the equilibrium signal after a step-change in concentration. We have now adapted our procedures to record the transient response corresponding to a sample step. The novelty in this approach is therefore the use of the dynamic components of the signal in order to better discriminate or differentiate a sample. In the developed electronic tongue systems, detection is carried out by using a sensor array formed by five potentiometric sensors based on PVC membranes. For the developed application we employed two different chloride-selective sensors, two nitrate-selective sensors and one generic response sensor. As the amount of raw data (fivefold recordings corresponding to the five sensors) is excessive for an ANN, some feature extraction step prior to the modelling was needed. In order to attain substantial data reduction and noise filtering, the data obtained were fitted with orthonormal Legendre polynomials. In this case, a third-degree Legendre polynomial was shown to be sufficient to fit the data. The coefficients of these polynomials were the input information fed into the ANN used to model the concentrations of the determined species (Cl, \({\text{ NO}}^{{\text{ - }}}_{{\text{3}}} \) and \({\text{HCO}}^{{\text{ - }}}_{{\text{3}}} \)). Best results were obtained by using a backpropagation neural network trained with the Bayesian regularisation algorithm; the net had a single hidden layer containing three neurons with the tansig transfer function. The results obtained from the time-dependent response were compared with those obtained from steady-state conditions, showing the former superior performance. Finally, the method was applied for determining anions in synthetic samples and real water samples, where a satisfactory comparison was also achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Di Natale C, Macagnano A, Davide F, D’Amico A, Legin A, Vlasov Y, Rudnitskaya A, Selezenev B (1997) Sens Actuators B 44:423–428

    Article  Google Scholar 

  2. Toko K (1998) Biosens Bioelectron 13:701–709

    Article  CAS  Google Scholar 

  3. Krantz-Rülcker C, Stenberg M, Winquist F, Lundström I (2001) Anal Chim Acta 426:217–226

    Article  Google Scholar 

  4. Lavigne JJ, Savoy S, Clevenger MB, Ritchie JE, McDoniel B, Yoo SJ, Anslyn EV, McDevitt JT, Shear JB, Neikirk D (1998) J Am Chem Soc 120:6429–6430

    Article  CAS  Google Scholar 

  5. Gardner JW, Barlett PN (1994) Sens Actuators B 18–19:211–220

    Google Scholar 

  6. Bos M, Bos A, van der Linden WE (1990) Anal Chim Acta 233:31–39

    Article  CAS  Google Scholar 

  7. Baret M, Massart DL, Fabry P, Conesa F, Eichner C, Menardo C (2000) Talanta 51:863–877

    Article  CAS  Google Scholar 

  8. Gallardo J, Alegret S, Muñoz R, De Román M, Leija L, Hernández PR, del Valle M (2003) Anal Bioanal Chem 377:248–256

    Article  CAS  Google Scholar 

  9. Gallardo J, Alegret S, De Román M, Muñoz R, Hernández PR, Leija L, del Valle M (2003) Anal Lett 14:2893–2908

    Article  Google Scholar 

  10. Gallardo J, Alegret S, Muñoz R, Leija L, Hernández PR, del Valle M (2005) Electroanalysis 17:348–355

    Article  CAS  Google Scholar 

  11. Gutés A, Céspedes F, Alegret S, del Valle M (2005) Talanta 66:1187–1196

    Article  Google Scholar 

  12. Cortina M, Gutés A, Alegret S, del Valle M (2005) Talanta 66:1197–1206

    Article  CAS  Google Scholar 

  13. Santos E, Conceição M, Montenegro BSM, Couto C, Araújo AN, Pimentel MF, da Silva VL (2004) Talanta 63:721–727

    Article  CAS  Google Scholar 

  14. Simons J, Bos M, van der Linden WE (1995) Analyst 120:1009–1012

    Article  CAS  Google Scholar 

  15. Richards E, Bessant C, Saini S (2004) Analyst 129:355–358

    Article  CAS  Google Scholar 

  16. Richards E, Bessant C, Saini S (2002) Chemometr Intell Lab Syst 61:35–49

    Article  CAS  Google Scholar 

  17. Tchistiakov V, Ruckebusch C, Duponchel L, Huvenne JP, Legrand P (2000) Chemom Intell Lab Syst 54:93–106

    Article  CAS  Google Scholar 

  18. Walczak B, Massart DL (1997) Chemom Intell Lab Syst 36:81–94

    Article  CAS  Google Scholar 

  19. de Carvalho RM, Mello C, Kubota LT (2000) Anal Chim Acta 420:109–121

    Article  Google Scholar 

  20. Artusson T, Spångeus P, Holmberg M (2002) Anal Chim Acta 452 :255–264

    Article  Google Scholar 

  21. Ensafi AA, Khayamian T, Atabati M (2002) Talanta 57:785–793

    Article  CAS  Google Scholar 

  22. Jetter K, Depczynsky U, Molt K, Niemöller A (2000) Anal Chim Acta 420:169–180

    Article  CAS  Google Scholar 

  23. Artusson T, Holmberg M (2002) Sens Actuators B 87:379–391

    Article  Google Scholar 

  24. Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw Hill, New York

    Google Scholar 

  25. Durán A, Cortina M, Velasco L, Rodríguez JA, Alegret S, del Valle M (2006) Sensors 6:19–29

  26. Alonso J, Baró J, Bartrolí J, Sánchez J, del Valle M (1995) Anal Chim Acta 308:115–121

    Article  CAS  Google Scholar 

  27. Pérez-Olmos R, Rios A, Fernández JR, Lapa RAS, Lima JLFC (2001) Talanta 53:741–748

    Article  Google Scholar 

  28. Andreakis GE, Moschou EA, Matthaiou K, Froudakis GE, Chaniotakis NA (2001) Anal Chim Acta 439:273–280

    Article  Google Scholar 

  29. Koizumi S, Imato T, Ishibashi N (1997) Fresenius J Anal Chem 357:37–43

    Article  CAS  Google Scholar 

  30. Steinle ED, Schaller U, Meyerhoff ME (1998) Anal Sci 14:79–84

    Article  CAS  Google Scholar 

  31. Isildak I, Asan A (1999) Talanta 48:967–978

    Article  CAS  Google Scholar 

  32. Demuth H, Baele M (1992) Neural network toolbox, for use with MATLAB. Mathwork Inc, Natick, MA, USA

    Google Scholar 

  33. Mackay JC (1995) Probable networks and plausible predictions: a review of practical Bayesian methods for supervised neural networks. Technical Report, Cavendish Laboratory, Cambridge, UK

  34. Diamond D (1998) Principles of chemical and biological sensors. Wiley, New York

    Google Scholar 

  35. Distante C, Leo M, Siciliano P, Persaud KC (2002) Sens Actuators B 87:274–288

    Article  Google Scholar 

  36. Ionescu R, Llobet E, Brezmes J, Vilanova X, Correig X (2003) Sens Actuators B 95:177–182

    Article  Google Scholar 

  37. Gutierrez-Osuna R, Gutierrez-Galveza A, Powarb N (2003) Sens Actuators B 93:57–66

    Article  Google Scholar 

  38. Gallardo J, Alegret S, del Valle M (2004) Sens Actuators B 101:72–80

    Article  Google Scholar 

  39. Gutés A, Céspedes F, Alegret S, del Valle M (2005) Biosens Bioelectron 20:1668–1673

    Article  Google Scholar 

  40. Despagne F, Massart DL (1998) Analyst 123:157R–178R

    Article  CAS  Google Scholar 

  41. Baret M, Massart DL, Fabry P, Menardo D, Conesa F (1999) Talanta 50:541–558

    Article  CAS  Google Scholar 

  42. Gross L, Yeung E (1989) J Chromatogr 480:169–178

    Article  CAS  Google Scholar 

  43. American Society for Testing and Materials (1982) Standard methods for acidity or alkalinity of water. American Soc. Testing & Materials, Philadelphia, PA D1067-70 (reapproved 1977)

    Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the MECD (Madrid Spain) through project CTQ2004-08134, and by the Department of Universities and the Information Society (DURSI) from the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. del Valle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortina, M., Duran, A., Alegret, S. et al. A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination. Anal Bioanal Chem 385, 1186–1194 (2006). https://doi.org/10.1007/s00216-006-0530-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0530-2

Keywords

Navigation