Skip to main content
Log in

Electroporation of cells in microfluidic devices: a review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In recent years, several publications on microfluidic devices have focused on the process of electroporation, which results in the poration of the biological cell membrane. The devices involved are designed for cell analysis, transfection or pasteurization. The high electric field strengths needed are induced by placing the electrodes in close proximity or by creating a constriction between the electrodes, which focuses the electric field. Detection is usually achieved through fluorescent labeling or by measuring impedance. So far, most of these devices have only concerned themselves solely with the electroporation process, but integration with separation and detection processes is expected in the near future. In particular, single-cell content analysis is expected to add further value to the concept of the microfluidic chip. Furthermore, if advanced pulse schemes are employed, such microdevices can also enhance research into intracellular electroporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–f
Fig. 3a–d
Fig. 4

Similar content being viewed by others

References

  1. Andersson H (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol 15(1):44–49

    Article  PubMed  CAS  Google Scholar 

  2. Schasfoort RBM (1999) Field-effect flow control for microfabricated fluidic networks. Science 286(5441):942–945

    Article  PubMed  CAS  Google Scholar 

  3. Prins MWJ (2001) Fluid control in multichannel structures by electrocapillary pressure. Science 291(5502):277–280

    Article  PubMed  CAS  Google Scholar 

  4. Andersson H (2003) Microfluidic devices for cellomics: a review. Sens Actuators B 92(3):315–325

    Article  CAS  Google Scholar 

  5. Wong PK, Wang TH, Deval JH, Ho CM (2004) Electrokinetics in micro devices for biotechnological applications. IEEE/ASME T Mechatron 9(2):366–376

    Article  Google Scholar 

  6. Hunter RJ (1980) Zeta potential in colloid science: principles and applications. Academic, London

    Google Scholar 

  7. MacInnes JM (2002) Computation of reacting electrokinetic flow in microchannel geometries. Chem Eng Sci 57(21):4539–4558

    Article  CAS  Google Scholar 

  8. Haswell SJ (1997) Development and operating characteristics of micro flow injection analysis systems based on electroosmotic flow. Anal Chim Acta 122:1R–10R

    CAS  Google Scholar 

  9. Bruin GJM (2000) Recent developments in electrokinetically driven analysis on microfabricated devices. Electrophoresis 21(18):3931–3951

    Article  PubMed  CAS  Google Scholar 

  10. Washizu M (2005) Biological applications of electrostatic surface field effects. J Electrost 63(6–10):795–802

    Article  CAS  Google Scholar 

  11. Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson SMH, van den Berg A (2005) Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device. Lab Chip 5(1):49–55

    Article  PubMed  CAS  Google Scholar 

  12. Stuart JN, Sweedler JV (2002) Single-cell analysis by capillary electrophoresis. Anal Bioanal Chem 375:28–29

    PubMed  Google Scholar 

  13. Cabrera CR, Yager P (2001) Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques. Electrophoresis 22(2):355–362

    Article  PubMed  CAS  Google Scholar 

  14. Li PCH, Harrison DJ (1997) Transport, manipulation and reaction of biological cells on-chip using electrokinetic effects. Anal Chem 69:1564–1568

    Article  PubMed  CAS  Google Scholar 

  15. Doh I, Cho Y-H (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators A 121(1):59–65

    Article  CAS  Google Scholar 

  16. Nedelcu S, Watson JHP (2004) Size separation of DNA molecules by pulsed electric field dielectrophoresis. J Phys D Appl Phys 37(15):2197–2204

    Article  CAS  Google Scholar 

  17. Clague DS, Wheeler EK (2001) Dielectrophoretic manipulation of macromolecules: the electric field. Phys Rev 6402(2):6605

    Google Scholar 

  18. Chang DC, Chassy BM, Saunders JA (1992) Guide to electroporation and electrofusion. Academic, San Diego, CA

    Google Scholar 

  19. Hamilton WA, Sale AJH (1967) Effects of high electric fields on microorganisms. II. Mechanism of action of the lethal effect. Biochim Biophys Acta 148:789–800

    CAS  Google Scholar 

  20. Sale AJH, Hamilton WA (1967) Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts. Biochim Biophys Acta 148:781–788

    Google Scholar 

  21. Sale AJH, Hamilton WA (1968) Effects of high electric fields on microorganisms. III. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta 163:37–43

    Article  PubMed  CAS  Google Scholar 

  22. Ho SY, Mittal GS, Cross JD (1997) Effects of high electric field pulses on the activity of selected enzymes. J Food Eng 31:69–84

    Article  Google Scholar 

  23. Dimitrov DS, Sowers AE (1990) Membrane electroporaton—fast molecular exchange by electroosmosis. Biochim Biophys Acta 1022(3):381–392

    Article  PubMed  CAS  Google Scholar 

  24. Prasanna GL, Panda T (1997) Electroporation: basic principles, practical considerations and applications in molecular biology. Bioprocess Eng 16:261–264

    Article  CAS  Google Scholar 

  25. Serpersu EH, Tsong TY (1984) Activation of electrogenic Rb+ transport of (Na,K)-ATPase by an electric field. J Biol Chem 259(11):7155–7162

    PubMed  CAS  Google Scholar 

  26. Serpersu EH, Tsong TY, Kinosita K (1985) Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim Biophys Acta 812(3):779–785

    Article  PubMed  CAS  Google Scholar 

  27. Tsong TY, Kinosita K (1985) Use of voltage pulses for the pore opening and drug loading and the subsequent resealing of red blood cells. Bibl Haematol (Basel) 51:108–114

    Google Scholar 

  28. Wouters PC (1999) Effects of pulsed electric fields on inactivation kinetics of Listeria innocua. Appl Environ Microbiol 65(12):5364–5371

    PubMed  CAS  Google Scholar 

  29. Knorr D, Angersbach A, Eshtiaghi MN, Heinz V, Lee D (2001) Processing concepts based on high intensity electric field pulses. Trends Food Sci Technol 12(3&4):129–135

    Article  CAS  Google Scholar 

  30. Barbosa-Canovas GV, Pothakamury UR, Gongora-Nieto MM, Swanson BG (1999) Preservation of foods with pulsed electric fields. Academic, San Diego, CA, p 1

    Book  Google Scholar 

  31. Mastwijk HC, Bartels PV (2004) Pulsed electric field (PEF) processing in the fruit juice and dairy industries. Int Rev Food Sci Technol 3:106–108

    Google Scholar 

  32. Min S, Jin ZT, Min SK, Yeom H, Zhang QH (2003) Commercial-scale pulsed electric field processing of orange juice. J Food Sci 68(4):1265–1271

    Article  CAS  Google Scholar 

  33. Yeom H, Yeom HW, Evrendilek GA, Jin ZT, Zhang QH (2004) Processing of yoghurt-based products with pulsed electric fields: Microbial, sensory and physical evaluations. J Food Process Preserv 28(3):161–178

    Article  Google Scholar 

  34. Belghiti KE, Vorobiev E (2004) Mass transfer of sugar from sugar beets enhanced by pulsed electric fields. Food Bioprod Process 82(3):226–230

    Article  Google Scholar 

  35. Eshtiaghi MN, Knorr D (2002) High electric field pulse pretreatment: potential for sugar beet processing. J Food Eng 52(3):265

    Article  Google Scholar 

  36. Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  PubMed  CAS  Google Scholar 

  37. Pol IE (2000) Pulsed-electric field treatment enhances the bactericidal action of nisin against Bacillus cereus. Appl Environ Microbiol 66(1):428–430

    PubMed  CAS  Google Scholar 

  38. Lelieveld HLM (2005) PEF—a food industry’s view. In: Barbosa-Canovas GV, Tapia MS, Cano MP (eds) Novel food processing technologies. CRC, Boca Raton, FL, pp 145–156

    Google Scholar 

  39. Lundqvist JA, Sahlin F, Aberg MA, Stromberg A, Eriksson PS, Orwar O (1998) Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes. Proc Natl Acad Sci USA 95:10356–10360

    Article  PubMed  CAS  Google Scholar 

  40. Olofsson J, Nolkrantz K, Ryttsen F, Lambie BA, Weber SG, Orwar O (2003) Single-cell electroporation. Curr Opin Biotechnol 14:29–34

    Article  PubMed  CAS  Google Scholar 

  41. Ryttsen F, Farre C, Brennan C, Weber SG, Nolkrantz K, Jardemark K, Chiu DT, Orwar O (2000) Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy. Biophys J 79(4):1993–2001

    Article  PubMed  CAS  Google Scholar 

  42. Nolkrantz K, Farre C, Brederlau A, Karlsson RI, Brennan C, Eriksson PS, Weber SG, Sandberg M, Orwar O (2001) Electroporation of single cells and tissues with an electrolyte-filled capillary. Anal Chem 73(18):4469–4477

    Article  PubMed  CAS  Google Scholar 

  43. Zabzdyr JL, Lillard SJ (2001) New approaches to single-cell analysis by capillary electrophoresis. Trends Anal Chem 20(9):467–476

    Article  CAS  Google Scholar 

  44. Yeung ES (1999) Study of single cells by using capillary electrophoresis and native fluorescence detection. J Chromatogr A 830(2):243–262

    Article  PubMed  CAS  Google Scholar 

  45. Jankowski JA, Tracht S, Sweedler JV (1995) Assaying single cells with capillary electrophoresis. Trends Anal Chem 14(4):170–176

    Article  CAS  Google Scholar 

  46. Vrouwe EX, Luttge R, van den Berg A (2004) Direct measurement of lithium in whole blood using microchip capillary electrophoresis with integrated conductivity detection. Electrophoresis 25(10–11):1660–1667

    Article  PubMed  CAS  Google Scholar 

  47. Verpoorte E (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23(5):677–712

    Article  PubMed  CAS  Google Scholar 

  48. Munce NR, Li JZ, Herman PR, Lilge L (2004) Microfabricated system for parallel single-cell capillary electrophoresis. Anal Chem 76:4983–4989

    Article  PubMed  CAS  Google Scholar 

  49. Wheeler AR, Morishima K, Arnold DW, Rossi AB, Zare RN (2000) van den Berg A, Olthuis W, Bergveld P (eds) Micro Total Analysis Systems 2000. Kluwer, Dordrecht, p 623 (ISBN 0-7923-6387-6)

    Google Scholar 

  50. Gao J, Yin XF, Fang ZL (2004) Integration of single cell injection, cell lysis separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4:47–52

    Article  PubMed  CAS  Google Scholar 

  51. McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal Chem 75:5646–5655

    Article  PubMed  CAS  Google Scholar 

  52. Davalos R, Huang Y, Rubinsky B (2000) Electroporation: bio-electrochemical mass transfer at the nanoscale. Microscale Therm Eng 4:147–159

    Article  CAS  Google Scholar 

  53. Huang Y, Rubinsky B (1999) Micro-electroporation: improving the efficiency and understanding of electrical permeabilization of cells. Biomed Microdev 2(2):145–150

    Article  Google Scholar 

  54. Huang Y, Rubinsky B (2001) Microfabricated electroporation chip for single cell membrane permiabilization. Sens Actuators A 89:242–249

    Article  Google Scholar 

  55. Huang Y, Sekhon NS, Borninski J, Chen N, Rubinsky B (2003) Instantaneous, quantitative single-cell viability assessment by electric evaluation of cell membrane integrity with microfabricated devices. Sens Actuators A 105:31–39

    Google Scholar 

  56. Lee S-W, Tai Y-C (1999) A micro cell lysis device. Sens Actuators A 73(1–2):74–79

    Article  Google Scholar 

  57. Suehiro J, Yatsunami R, Hamada R, Hara M (1999) Quantitative estimation of biological cell concentration suspended in aqueous medium by using dielectrophoretic impedance measurement method. J Phys D Appl Phys 32(21):2814–2820

    Article  CAS  Google Scholar 

  58. Suehiro J, Shutou M, Hatano T, Hara M (2003) High sensitive detection of biological cells using dielectrophoretic impedance measurement method combined with electropermeabilization. Sens Actuators B 96(1–2):144–151

    Article  CAS  Google Scholar 

  59. Suehiro J, Hatano T, Shutou M, Hara M (2005) Improvement of electric pulse shape for electropermeabilization-assisted dielectrophoretic impedance measurement for high sensitive bacteria detection. Sens Actuators B 109(2):209–215

    Article  CAS  Google Scholar 

  60. Lu H, Schmidt MA, Jensen KF (2005) A microfluidic electroporation device for cell lysis. Lab Chip 5:23–29

    Article  PubMed  CAS  Google Scholar 

  61. Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum, New York, p 1

    Google Scholar 

  62. Chang DC (1992) Structure and dynamics of electric field-induced membrane pores as revealed by rapid-freezing electron microscopy. In: Chang DC, Sowers AE, Chassy B, Saunders JA (eds) Guide to electroporation and electrofusion. Academic, San Diego, CA, p 9

    Google Scholar 

  63. Loomis-Husselbee JW, Cullen PJ, Irvine RF, Dawson AP (1991) Electroporation can cause artifacts due to solubilization of cations from the electrode plates. Biochem J 277:883–885

    PubMed  CAS  Google Scholar 

  64. Lin YC, Jen CM, Huang MY, Wu CY, Lin XZ (2001) Electroporation microchips for continuous gene transfection. Sens Actuators B 79:137–143

    Article  Google Scholar 

  65. Khine M, Lau A, Ionescu-Zanetti C, Seo J, Lee LP (2005) A single cell electroporation chip. Lab Chip 5:38–43

    Article  PubMed  CAS  Google Scholar 

  66. Seo J, Ionescu-Zanetti C, Diamond J, Lal R, Lee LP (2004) Integrated multiple patch-clamp array chip via lateral cell trapping junctions. Appl Phys Lett 84(11):1973–1975

    Article  CAS  Google Scholar 

  67. Huang Y, Rubinsky B (2003) Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation. Sens Actuators A 104:205–212

    Article  CAS  Google Scholar 

  68. Lin YC, Li M, Fan CS, Wu LW (2003) A microchip for electroporation of primary endothelial cells. Sens Actuators A 108:12–19

    Article  CAS  Google Scholar 

  69. Lin YC, Li M, Wu CC (2004) Simulation and experimental demonstration of the electric field assisted electroporation microchip for in vitro gene delivery enhancement. Lab Chip 4:104–108

    Article  PubMed  CAS  Google Scholar 

  70. Fox MB, Esveld E, Luttge R, Boom R (2005) A new pulsed electric field microreactor: comparison between the laboratory and microscale. Lab Chip 5(9):943–948

    Article  PubMed  CAS  Google Scholar 

  71. Roodenburg B, Morren J, Berg HE, de Haan SWH (2005) Metal release in a stainless steel Pulsed Electric Field (PEF) system: Part I. Effect of different pulse shapes; theory and experimental method. Innov Food Sci Emerg Technol 6(3):327–336

    Article  CAS  Google Scholar 

  72. Dunn J, Pearlman JS (1987) High pulsed voltage systems for extending the shelf life of pumpable food products. United States Patent, No. 4,695,472, p 1

  73. Efremov NM, Adamiak BY, Blochin VI, Dadashev SJ, Dmitriev KI, Semjonov VN, Levashov VF, Jusbashev VF (2000) Experimental investigation of the action of pulsed electric discharges in liquids on biological objects. IEEE T Plasma Sci 28:224–229

    Article  CAS  Google Scholar 

  74. Lubicki P, Jayaram S (1997) High voltage pulse application for the destruction of the gram-negative bacterium Yersinia enterocolitica. Bioelectrochem Bioenerg 43:135–141

    Article  CAS  Google Scholar 

  75. Mazurek B, Lubicki P, Staroniewicz Z (1995) Effect of short HV pusles on bacteria and fungi. IEEE T Dielectr Electr Insul 2:418–425

    Article  Google Scholar 

  76. Baer DR, Burrows PE, El-Azab AA (2003) Enhancing coating functionality using nanoscience and nanotechnology. Prog Org Coat 47(3–4):342–356

    Article  CAS  Google Scholar 

  77. Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26

    Article  PubMed  CAS  Google Scholar 

  78. Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem 74(12):2623–2636

    Article  PubMed  CAS  Google Scholar 

  79. Lettieri GL, Dodge A, Boer G, de Rooij NF, Verpoorte E (2003) A novel microfluidic concept for bioanalysis using freely moving beads trapped in recirculating flows. Lab Chip 3(1):34–39

    Article  PubMed  CAS  Google Scholar 

  80. Voldman J, Braff RA, Toner M, Gray ML, Schmidt MA (2001) Holding forces of single-particle dielectrophoretic traps. Biophys J 80(1):531–541

    PubMed  CAS  Google Scholar 

  81. Mueller KJ, Sukhorukov VL, Zimmermann U (2001) Reversible electropermeabilization of mammalian cells by high-intensity, ultra-short pulses of submicrosecond duration. J Membr Biol 184(2):161–170

    Article  PubMed  Google Scholar 

  82. Chen N, Schoenbach KH, Kolb JF, James Swanson R, Garner AL, Yang J, Joshi RP, Beebe SJ (2004) Leukemic cell intracellular responses to nanosecond electric fields. Biochem Biophys Res Commun 317:421–427

    Article  PubMed  CAS  Google Scholar 

  83. Pakhomov AG, Phinney A, Ashmore J, Walker III K, Kolb J, Kono S, Schoenbach KH, Murphy MR (2004) Characterization of the cytotoxic effect of high-intensity, 10-ns duration electrical pulses. IEEE T Plasma Sci 32(4):1579–1586

    Article  CAS  Google Scholar 

  84. Schoenbach KH, Peterkin FE, Alden RW, Beebe SJ (1997) The effects of pulsed electric fields on biological cells: Experiments and applications. IEEE T Plasma Sci 25(2):284–292

    Article  Google Scholar 

  85. Stacey M, Stickley J, Fox P, Statler V, Schoenbach K, Beebe SJ, Buescher S (2003) Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis. Mutat Res 542:65–75

    PubMed  CAS  Google Scholar 

  86. Beebe SJ, Fox PM, Rec LJ, Willis EL, Schoenbach KH (2003) Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells. FASEB J 17(11):1493–1495

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, M.B., Esveld, D.C., Valero, A. et al. Electroporation of cells in microfluidic devices: a review. Anal Bioanal Chem 385, 474–485 (2006). https://doi.org/10.1007/s00216-006-0327-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0327-3

Keywords

Navigation