Skip to main content
Log in

Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC–MS–MS)

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Daily exposure of humans to phthalates may be a health risk because animal experiments have shown these compounds can affect the differentiation and function of the reproductive system. Because milk is the main source of nutrition for infants, knowledge of phthalate levels is important for exposure and risk assessment. Here we describe the development and validation of a quantitative analytical procedure for determination of phthalate metabolites in human milk. The phthalate monoesters investigated were: monomethyl phthalate (mMP), monoethyl phthalate (mEP), mono-n-butyl phthalate (mBP), monobenzyl phthalate (mBzP), mono-(2-ethylhexyl) phthalate (mEHP), and monoisononyl phthalate (mNP). The method is based on liquid extraction with a mixture of ethyl acetate and cyclohexane (95:5) followed by two-step solid-phase extraction (SPE). Detection and quantification of the phthalate monoesters were accomplished by high-pressure liquid chromatography using a Betasil phenyl column (100 mm×2.1 mm×3 μm) and triple tandem mass spectrometry (LC–MS–MS). Detection limits were in the range 0.01 to 0.5 μg L−1 and method variation was from 5 to 15%. Analysis of 36 milk samples showed that all these phthalates were present, albeit at different concentrations. Median values (μg L−1) obtained were 0.11 (mMP), 0.95 (mEP), 3.5 (mBP), 0.8 (mBzP), 9.5 (mEHP), and 101 (mNP). We also analysed seven samples of consumer milk and ten samples of infant formula. Only mBP and mEHP were detected in these samples, in the ranges 0.6–3.9 μg L−1 (mBP) and 5.6–9.9 μg L−1 (mEHP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ATSDR (1995) U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GA

  2. ATSDR (2001) U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GA

  3. ATSDR (2002) U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry, Atlanta, GA

  4. The Danish Veterinary and Food Administration. Report 2003:15

  5. Heindel JJ, Powel CJ (1992) Toxicol Appl Pharmacol 115:116–123

    Article  CAS  PubMed  Google Scholar 

  6. Ema M, Kurosaka R, Amano H, Ogawa Y (1995) Toxicol Lett 78:101–106

    Article  CAS  PubMed  Google Scholar 

  7. Gray E Jr, Ostby J, Furr J, Price M, Veeramachanemi DNR, Parks L (2000) Toxicol Sci 58:350–365

    Article  CAS  PubMed  Google Scholar 

  8. Foster PMD, Mylchreest E, Gaido KW, Sar M (2001) Hum Reprod Update 7:231–235

    Article  CAS  PubMed  Google Scholar 

  9. Mylchreest E, Sar M, Wallace DG, Foster PMD (2002) Reprod Toxicol 16:19–28

    Article  CAS  PubMed  Google Scholar 

  10. Fisher JS, Macherson S, Marchetti N, Sharpe R (2003) Hum Reprod 18:1383–1394

    Article  CAS  PubMed  Google Scholar 

  11. Akingbemi BT, Ge R, Klinefelter GR, Zirkin BR, Hardy MP (2004) Proc Natl Acad Sci USA 101:775–780

    Article  CAS  PubMed  Google Scholar 

  12. Albro PW, Chapin RE, Corbett JT, Schroder J, Phelps JL (1989) Toxicol Appl Pharmacol 100:193–200)

    Article  CAS  PubMed  Google Scholar 

  13. Kluwe WM (1982) Environ Health Perspect 45:3–10

    CAS  PubMed  Google Scholar 

  14. Fennel TR, Wojciech LK, Sumner SCJ, Snyder RW (2004) Toxicol Sci 82:407–418

    Article  PubMed  Google Scholar 

  15. Ljungvall K, Tienpont B, David F, Magnusson, Töneke K (2004) Arch Toxicol 78:384–389

    Article  CAS  PubMed  Google Scholar 

  16. Weidenhoffer Z, Turek B, Mitera J (1996) Cent Eur J Public Health 1:11–15

    Google Scholar 

  17. Albro PW (1986) Environ Health Perspect 65:293–298

    CAS  PubMed  Google Scholar 

  18. Silva MJ, Barr DB, Reidy JA, Kato K, Malek NA, Hodge CC, Hurtz III D, Calafat AM, Needham LL, Brock JW (2003) Arch Toxicol 77:561–567

    Article  CAS  PubMed  Google Scholar 

  19. Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP, Brock JW, Needham LL, Calafat AM (2004) Environ Health Perspect 112:331–338

    CAS  PubMed  Google Scholar 

  20. Schade G, Heinzow B (1998) Sci Total Environ 215:31–39

    Article  CAS  PubMed  Google Scholar 

  21. Kiviranta H, Purkunen R, Vartiainen T (1999) Chemosphere 38:311–323

    Article  CAS  PubMed  Google Scholar 

  22. Harris CA, O’Hagen S, Merson GHJ (1999) Hum Exp Toxicol 18:602–606

    Article  CAS  PubMed  Google Scholar 

  23. Norén K, Meironyté D (2000) Chemosphere 40:1111–1123

    Article  PubMed  Google Scholar 

  24. Calafat AM, Slakman AR, Silva MJ, Herbert AR, Needham LL (2004) J Chromatogr B 805:49–56

    Article  CAS  Google Scholar 

  25. Jenness R (1979) Semin Perinatol 3:225–239

    CAS  PubMed  Google Scholar 

  26. Csanády GA, Oberste-Frielinghaus HR, Semder B, Baur C, Scneider KT, Filser JG (2002) Arch Toxicol 76:299–305

    Article  PubMed  Google Scholar 

  27. Kato K, Silva MJ, Brock JW, Reidy JA, Malek NA, Hodge CC, Nakazawa H, Needham LL, Barr DB (2003) J Anal Toxicol 27:284–289

    CAS  PubMed  Google Scholar 

  28. Otaka H, Yasuhara A, Morita M (2003) Anal Sci 19:1663–1666

    Article  CAS  PubMed  Google Scholar 

  29. Bennet DA, Chung AC, Lee SM (1997) JOAC Int 80:1065–1077

    Google Scholar 

  30. Holstege DM, Puschner B, Whitehead G, Galey FD (2002) J Agric Food Chem 50:406–411

    Article  CAS  PubMed  Google Scholar 

  31. Blount BC, Milgram KE, Silva MJ, Malek NA, Reidy JA, Needham LL, Brock LW (2000) Anal Chem 72:4127–4134

    Article  CAS  PubMed  Google Scholar 

  32. Silva MJ, Slakman AR, Reidy JA, Preau JL Jr, Herbert AR, Samandar E, Needham LL, Calafat AM (2004) J Chromatogr B 805:161–167

    Article  CAS  Google Scholar 

  33. International Standard ISO 5725–1981

  34. Hauser R, Duty S, Godfrey-Bailey L, Calafat AM (2004) Environ Health Perspect 112:751–753

    PubMed  Google Scholar 

  35. Kohn MC, Parham F, Masten SA, Portier CJ, Shelby MD, Brock JW, Needham LL (2000) Environ Health Perspect 108:440–442

    Google Scholar 

  36. Koch HM, Drexler H, Angerer J (2003) Int J Hyg Environ Health 206:77–83

    CAS  PubMed  Google Scholar 

  37. NTP-CERHR-DEHP-00 (2000) Center For The Evaluation Of Risks To Human Reproduction. Di(2-ethylhexyl) phthalate

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Velux Fonden for instrumental equipment and financial support from the European Union, project Expored (QLK4-CT-2001-00269), and The Danish Medical Research Council (9700833, 9700909). We also thank John W. Brock PhD for his advice during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerda K. Mortensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortensen, G.K., Main, K.M., Andersson, AM. et al. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC–MS–MS). Anal Bioanal Chem 382, 1084–1092 (2005). https://doi.org/10.1007/s00216-005-3218-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3218-0

Keywords

Navigation