Skip to main content
Log in

Determination of sulfur and selected trace elements in metallothionein-like proteins using capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry with an octopole reaction cell

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The determination of sulfur in biologically relevant samples such as metalloproteins is described. The analytical methodology used is based on robust on-line coupling between capillary electrophoresis (CE) and octopole reaction cell inductively-coupled plasma mass spectrometry (ORC–ICP–MS). Polyatomic ions that form in the plasma and interfere with the determination of S at mass 32 are minimised by addition of xenon to the collision cell. The method has been applied to the separation and simultaneous element-specific detection of sulfur, cadmium, copper, and zinc in commercially available metallothionein preparations (MT) and metallothionein-like proteins (MLP) extracted from liver samples of bream (Abramis brama L.) caught in the river Elbe, Germany. Instrumental detection limits have been calculated according to the German standard procedure DIN 32645 for the determination of sulfur and some simultaneously measured trace elements in aqueous solution. For sulfur detection limits down to 1.3 μg L−1 (34S) and 3.2 μg L−1 (32S) were derived. For the other trace elements determined simultaneously detection limits ranging from 300 ng L−1 (58Ni) to 500 ng L−1 (66Zn, 55Mn) were achieved. For quantification of sulfur and cadmium in a commercially available MT preparation under hyphenated conditions the use of external calibration is suggested. Finally, the need for proper sample-preparation technique will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Kägi JHR (1991) Methods Enzymol 205:613

    PubMed  Google Scholar 

  2. Stillman MJ (1995) Coord Chem Rev 144:461

    CAS  Google Scholar 

  3. Nordberg M (1998) Talanta 46:243

    CAS  Google Scholar 

  4. Vallee BL (1995) Neurochem Int 27:23

    CAS  PubMed  Google Scholar 

  5. Dabrio M, Rodriguez AR, Bodin G, Bebianno MJ, De Ley M, Sestakova I, Vasak M, Nordberg M (2002) J Inorg Biochem 88:123

    Article  CAS  PubMed  Google Scholar 

  6. Marco A, Compano R, Rubio R, Casals I, Krotz L, Ragaglia L, Giazzi G (2001) Analyst 126:1820

    Article  CAS  Google Scholar 

  7. Mertens M, Rittmeyer C, Kolbesen BO (2001) Spectrochim Acta B 56:2157

    Article  Google Scholar 

  8. Kola H, Peramaki P, Valimaki I (2002) J Anal At Spectrom 17:104

    Article  CAS  Google Scholar 

  9. Murillo M, Carrion N, Chirinos J (1993) J Anal At Spectrom 8:493

    CAS  Google Scholar 

  10. Prohaska T, Latkoczy C, Stingeder G (1999) J Anal At Spectrom 14:1501

    Article  CAS  Google Scholar 

  11. Wind M, Wensch H, Lehmann WD (2001) Anal Chem 73:3006

    Google Scholar 

  12. Evans EH, Wolf JC, Eckers C (2001) Anal Chem 73:4722

    Article  CAS  PubMed  Google Scholar 

  13. Divjak B, Goessler W (1999) J Chromatogr A 844:161

    Article  CAS  Google Scholar 

  14. Koplik R, Pavelkova H, Cincibuchova J, Mestek O, Kvasnicka F, Suchanek M (2002) J Chromatogr B 770:261

    CAS  Google Scholar 

  15. Bandura DR, Baranov VI, Tanner SD (2002) Anal Chem 74:1497

    Article  CAS  PubMed  Google Scholar 

  16. Lobinski R, Chassaigne H, Szpunar J (1998) Talanta 46:271

    CAS  Google Scholar 

  17. Prange A, Schaumlöffel D (2002) Anal Bioanal Chem 373:441

    Article  CAS  PubMed  Google Scholar 

  18. Schaumlöffel D, Prange A, Marx G, Heumann KG, Brätter P (2002) Anal Bioanal Chem 372:155

    PubMed  Google Scholar 

  19. Prange A, Schaumlöffel D, Brätter P, Richarz AN, Wolf C (2001) Fresenius J Anal Chem 371:764

    CAS  PubMed  Google Scholar 

  20. Schaumlöffel D, Prange A (1999) Fresenius J Anal Chem 364:452

    Google Scholar 

  21. Prange A, Schaumlöffel D (1999) J Anal At Spectrom 14:1329

    CAS  Google Scholar 

  22. Nonose NS, Matsuda N, Fudagawa N, Kubota M (1994) Spectrochim Acta B 49:955

    Article  Google Scholar 

  23. DIN 32645 Nachweis-, Erfassungs- und Bestimmungsgrenzen – Ermittlung unter Wiederholbedingungen, DIN Deutsches Institut für Normung eV, Berlin

  24. Leonhard P, Pepelnik R, Prange A, Yamada N, Yamada T (2002) J Anal At Spectrom 17:189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Simone Griesel and Ulrich Reus for performing the TXRF measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Prange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pröfrock, D., Leonhard, P. & Prange, A. Determination of sulfur and selected trace elements in metallothionein-like proteins using capillary electrophoresis hyphenated to inductively coupled plasma mass spectrometry with an octopole reaction cell. Anal Bioanal Chem 377, 132–139 (2003). https://doi.org/10.1007/s00216-003-2041-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2041-8

Keywords

Navigation