Skip to main content
Log in

Influence of the exchange–correlation potential on the description of the molecular mechanism of oxygen dissociation by Au nanoparticles

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The effect of the exchange–correlation functional on the molecular mechanism of dioxygen dissociation by Au nanoparticles is investigated using three Au nanoparticles of increasing size (Au25, Au38 and Au79) and various exchange–correlation functionals (local density approach, PW91, PBE and RevPBE. The effect of the exchange–correlation functional on the calculated adsorption energies is quite large and systematic whereas the effect on the calculated energy barriers is much smaller. Implications for the molecular mechanism of O2 dissociation, involving a competition between desorption and dissociation, are analyzed and discussed in detail.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haruta M (1997) Catal Today 36:153–166. doi:10.1016/S0920-5861(96)00208-8

    Article  CAS  Google Scholar 

  2. Haruta M (2005) Nature 437:1098–1099

    Article  CAS  Google Scholar 

  3. Valden M, Lai X, Goodman DW (1998) Science 281:1647–1650. doi:10.1126/science.281.5383.1647

    Article  CAS  Google Scholar 

  4. Nolan SP (2007) Nature 445:496–497. doi:10.1038/445496a

    Article  CAS  Google Scholar 

  5. Hashmi ASK (2007) Chem Rev 107:3180–3211. doi:10.1021/cr000436x

    Article  CAS  Google Scholar 

  6. Hashmi ASK, Hutchings GJ (2006) Angew Chem Int Ed Engl 45:7896–7936

    Article  Google Scholar 

  7. See also the reviews in the special issue dedicated to chemistry of nano-gold in (2008) Chem Soc Rev 37

  8. Carrettin S, Guzman J, Corma A (2005) Angew Chem Int Ed Engl 44:2242–2245. doi:10.1002/anie.200462560

    Article  CAS  Google Scholar 

  9. González-Arellano C, Corma A, Iglesias M, Sánchez F (2006) J Catal 238:497–501

    Article  CAS  Google Scholar 

  10. González-Arellano C, Abad A, Corma A, García H, Iglesias M, Sánchez F (2007) Angew Chem Int Ed Engl 119:1558–1560. doi:10.1002/ange.200604746

    Article  Google Scholar 

  11. Fu Q, Weber A, Flytzani-Stephanopoulos M (2003) Science 301:935–938. doi:10.1126/science.1085721

    Article  CAS  Google Scholar 

  12. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Perez M (2007) Science 318:1757–1760. doi:10.1126/science.1150038

    Article  CAS  Google Scholar 

  13. Corma A, Serna P (2006) Science 313:332–334. doi:10.1126/science.1128383

    Article  CAS  Google Scholar 

  14. Hughes MD, Xu YJ, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Nature 437:1132–1135. doi:10.1038/nature04190

    Article  CAS  Google Scholar 

  15. Nijhuis TA, Weckhuysen BM (2006) Catal Today 117:84–89

    Article  CAS  Google Scholar 

  16. Chowdhury B, Bravo-Suarez JJ, Mimura N, Lu J, Bando KK, Tsubota S, Haruta M (2006) J Phys Chem B 110:22995–22999. doi:10.1021/jp066008y

    Article  CAS  Google Scholar 

  17. Turner M, Golovko VB, Vaughan OPH, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Johnson BFG, Lambert RM (2008) Nature 454:981–983. doi:10.1038/nature07194

    Article  CAS  Google Scholar 

  18. Corma A, Garcia H (2008) Chem Soc Rev 37:2096–2126. doi:10.1039/b707314n

    Article  CAS  Google Scholar 

  19. Rodriguez JA, Liu P, Viñes F, Illas F, Takahashi Y, Nakamura K (2008) Angew Chem Int Ed Engl 47:6685–6689. doi:10.1002/anie.200801027

    Article  CAS  Google Scholar 

  20. Boronat M, Concepción P, Corma A, González S, Illas F, Serna P (2007) J Am Chem Soc 129:16230–16237. doi:10.1021/ja076721g

    Article  CAS  Google Scholar 

  21. Corma A, Serna P, Concepción P, Calvino JJ (2008) J Am Chem Soc 130:8748–8753. doi:10.1021/ja800959g

    Article  CAS  Google Scholar 

  22. Corma A, Boronat M, Gonzalez S, Illas F (2007) Chem Commun 3371–3373

  23. Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232–235. doi:10.1016/j.jcat.2004.01.001

    Article  CAS  Google Scholar 

  24. Remediakis IN, Lopez N, Nørskov JK (2005) Angew Chem Int Ed Engl 44:1824–1826. doi:10.1002/anie.200461699

    Article  CAS  Google Scholar 

  25. Deng X, Min BK, Guloy A, Friend CM (2005) J Am Chem Soc 127:9267–9270. doi:10.1021/ja050144j

    Article  CAS  Google Scholar 

  26. Wang Y, Gong X (2006) J Chem Phys 125(1–12):124703

    Article  CAS  Google Scholar 

  27. Barrio L, Liu P, Rodriguez JA, Campos-Martin JM, Fierro JLG (2007) J Phys Chem C 111:19001–19008. doi:10.1021/jp073552d

    Article  CAS  Google Scholar 

  28. Roldán A, González S, Ricart JM, Illas F (2009) Chem Phys Chem 10:348–351. doi:10.1002/cphc.200800702

    Google Scholar 

  29. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen SH, Nørskov JK (2005) Science 307:555–558. doi:10.1126/science.1106435

    Article  CAS  Google Scholar 

  30. Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Nørskov JK (2003) J Phys Chem B 107:11013–11021

    Article  CAS  Google Scholar 

  31. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413–7421. doi:10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  32. Roldan A, Vines F, Illas F, Ricart JM, Neyman KM (2008) Theor Chem Acc 120:565–573. doi:10.1007/s00214-008-0423-x

    Article  CAS  Google Scholar 

  33. Viñes F, Illas F, Neyman KM (2008) J Phys Chem A 112:8911–8915. doi:10.1021/jp8014854

    Article  CAS  Google Scholar 

  34. Loschen C, Bromley S, Neyman KM, Illas F (2007) J Phys Chem C 111:10142–10145. doi:10.1021/jp072787m

    Article  CAS  Google Scholar 

  35. Migani A, Loschen C, Illas F, Neyman KM (2008) Chem Phys Lett 465:106–109

    Article  CAS  Google Scholar 

  36. Loschen C, Migani A, Bromley ST, Illas F, Neyman KM (2008) Phys Chem Chem Phys 10:5730–5738. doi:10.1039/b805904g

    Article  CAS  Google Scholar 

  37. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15–50. doi:10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  38. Kresse G, Furthmueller J (1996) Phys Rev B 54:11169–11186. doi:10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  39. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  40. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687. doi:10.1103/PhysRevB.46.6671

    Article  CAS  Google Scholar 

  41. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Phys Rev B 48:4978–4978

    Article  CAS  Google Scholar 

  42. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249. doi:10.1103/PhysRevB.45.13244

    Article  Google Scholar 

  43. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1399. doi:10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  44. Zhang Y, Yang W (1998) Phys Rev Lett 80:890. doi:10.1103/PhysRevLett.80.890

    Article  CAS  Google Scholar 

  45. Mattsson AE, Armiento R, Schultz PA, Mattsson TR (2006) Phys Rev B 73(1–7):195123

    Article  CAS  Google Scholar 

  46. Blöchl PE (1994) Phys Rev B 50:17953–17979. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  47. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775. doi:10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  48. Torres D, Lopez N, Illas F (2006) J Catal 243:404–409. doi:10.1016/j.jcat.2006.08.011

    Article  CAS  Google Scholar 

  49. Torres D, Neyman KM, Illas F (2006) Chem Phys Lett 429:86–90

    Article  CAS  Google Scholar 

  50. Torres D, Illas F (2006) J Phys Chem B 110:13310–13313. doi:10.1021/jp0625917

    Article  CAS  Google Scholar 

  51. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192. doi:10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  52. Henkelman G, Jonsson H (2000) J Chem Phys 113:9978–9985. doi:10.1063/1.1323224

    Article  CAS  Google Scholar 

  53. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  54. Henkelman G, Jonsson H (1999) J Chem Phys 111:7010–7022. doi:10.1063/1.480097

    Article  CAS  Google Scholar 

  55. Laidler KJ (1987) Chemical kinetics, 3rd edn. Harper Collins, New York

    Google Scholar 

  56. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules, Van Nostrand Reinhold, New York

    Google Scholar 

  57. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comput Chem 28:899–908. doi:10.1002/jcc.20575

    Article  CAS  Google Scholar 

  58. Fajin JLC, Cordeiro MNDS, Gomes JRB (2007) J Phys Chem C 111:17311–17321. doi:10.1021/jp073796y

    Article  CAS  Google Scholar 

  59. Fajin JLC, Cordeiro MNDS, Gomes JRB (2008) J Phys Chem C 112:17291–17302. doi:10.1021/jp8031435

    Article  CAS  Google Scholar 

  60. White JA, Bird DM, Payne MC, Stich I (1994) Phys Rev Lett 73:1404–1407. doi:10.1103/PhysRevLett.73.1404

    Article  CAS  Google Scholar 

  61. Hammer B, Jacobsen KW, Nørskov JK (1993) Phys Rev Lett 70:3971–3974

    Article  CAS  Google Scholar 

  62. Hu P, King DA, Crampin S, Lee MH, Payne MC (1994) Chem Phys Lett 230:501–506

    Article  CAS  Google Scholar 

  63. Philipsen PHT, te Velde G, Baerends EJ (1994) Chem Phys Lett 226:583–588

    Article  CAS  Google Scholar 

  64. Hammer B, Scheffler M, Jacobsen KW, Nørskov JK (1994) Phys Rev Lett 73:1400–1403. doi:10.1103/PhysRevLett.73.1400

    Article  CAS  Google Scholar 

  65. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Science 321:1331–1335. doi:10.1126/science.1159639

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Alberto Roldán thanks Universitat Rovira i Virgili, for supporting his pre-doctoral research. Financial support has been provided by the Spanish Ministry of Science and Innovation (MICINN) (grants FIS2008-02238/FIS and CTQ2008-06549-C02-01) and, in part, by the Generalitat de Catalunya (Grants 2005SGR00697, 2005SGR-00104 and 2005 PEIR 0051/69). Computational time on the Marenostrum supercomputer of the Barcelona Supercomputing Center is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Illas.

Additional information

Dedicated to Professor Santiago Olivella on the occasion of his 65th birthday and published as part of the Olivella Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roldán, A., Ricart, J.M. & Illas, F. Influence of the exchange–correlation potential on the description of the molecular mechanism of oxygen dissociation by Au nanoparticles. Theor Chem Acc 123, 119–126 (2009). https://doi.org/10.1007/s00214-009-0540-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0540-1

Keywords

Navigation