Skip to main content
Log in

Effect of cholinergic neurotransmission modulation on visual spatial paired associate learning in healthy human adults

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Use of cross-species neuropsychological paradigms such as visual–spatial paired associate learning (PAL) may allow for a better understanding of underlying neural substrates of memory. Such paradigms, which are often used to guide models of memory in animals, can then be carried forward into humans to provide a basis for evaluation of pharmacologic compounds designed to ameliorate learning and memory impairments in neurologic and psychiatric morbidities.

Objectives

This double-blind, randomized, crossover trial investigated effects of donepezil, an acetylcholinesterase (AChE) inhibitor, in attenuating scopolamine-induced cognitive impairment using a novel, “process-based” computerized measure of visual–spatial PAL.

Results

In healthy male volunteers, scopolamine (0.6 mg) induced a time-dependent reduction in visual–spatial PAL, with the greatest impairment (Cohen's d = 1.37) observed 2 h after dosing. Cotreatment with donepezil (10 mg) significantly ameliorated scopolamine-induced impairment at the 2-h time point (Cohen's d = 0.66). Process-based analyses revealed a significant impairment in both memory (Cohen's d = 1.37 to 0.50) and executive (Cohen's d = 1 .21 to 0.62) aspects of visual–spatial PAL performance following acute scopolamine challenge, and these reductions were ameliorated by donepezil.

Conclusions

Acute scopolamine challenge can produce large and robust deficits in visual–spatial PAL, which reflect impairments in both memory and executive processes. Coadministration of a single dose of donepezil can ameliorate these deficits. These results provide support for the use of a visual–spatial PAL test as a pharmacodynamic cognitive marker of central nervous system (CNS)-mediating compounds in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barch DM, Carter CS, Arnsten A et al (2009) Selecting paradigms from cognitive neuroscience for translation into use in clinical trials: proceedings of the third CNTRICS meeting. Schizophr Bull 35:109–114

    Article  PubMed  Google Scholar 

  • Bartko SJ, Vendrell I, Saksida LM, Bussey TJ (2011) A computer-automated touchscreen paired-associates learning (PAL) task for mice: impairments following administration of scopolamine or dicyclomine and improvements following donepezil. Psychopharmacology (Berl) 214:537–548

    Article  CAS  Google Scholar 

  • Bond A, Lader M (1974) The use of analogue scales in rating subjective feelings. Br J Psychol 47:211–218

    Article  Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S et al (1995) Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits. J Neurochem 64:749–760

    Article  PubMed  CAS  Google Scholar 

  • Blackwell AD, Sahakian BJ, Vesey R, Semple JM, Robbins TW, Hodges JR (2004) Detecting dementia: Novel neuropsychological markers of preclinical Alzheimer's disease. Dement Geriatr Cogn Disord 17:42–48

    Article  PubMed  Google Scholar 

  • Blumenfeld RS, Ranganath C (2007) Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 13:280–291

    Article  PubMed  Google Scholar 

  • Bohme GA, Letchworth SR, Piot-Grosjean O et al (2004) In vitro and in vivo characterization of TC-1827, a novel brain alpha4beta2 nicotinic receptor agonist with pro-cognitive activity. Drug Development Research 62:26–40

    Article  CAS  Google Scholar 

  • Brasted PJ, Bussey TJ, Murray EA, Wise SP (2003) Role of the hippocampal system in associative learning beyond the spatial domain. Brain 126:1202–1223

    Article  PubMed  CAS  Google Scholar 

  • Buccafusco JJ, Terry AV, Webster SJ, Martin D, Hohnadel EJ, Bouchard KA, Warner SE (2008) The scopolamine-reversal paradigm in rats and monkeys: the importance of computer-assisted operant-conditioning memory tasks for screening drug candidates. Psychopharmacology (Berl) 199:481–494

    Article  CAS  Google Scholar 

  • Cachard-Chastel M, Devers S, Sicsic S, Langlois M, Lezoualc'h F, Gardier AM, Belzung C (2008) Prucalopride and donepezil act synergistically to reverse scopolamine-induced memory deficit in C57Bl/6j mice. Behav Brain Res 187:455–461

    Article  PubMed  CAS  Google Scholar 

  • Carter CS, Barch DM, Buchanan RW et al (2008) Identifying cognitive mechanisms targeted for treatment development in schizophrenia: an overview of the first meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia Initiative. Biol Psychiatry 64:4–10

    Article  PubMed  Google Scholar 

  • Chan WK, Wong PT, Sheu FS (2007) Frontal cortical alpha7 and alpha4beta2 nicotinic acetylcholine receptors in working and reference memory. Neuropharmacology 52:1641–1649

    Article  PubMed  CAS  Google Scholar 

  • Cho W, Maruff P, Connell J et al (2011) Additive effects of a cholinesterase inhibitor and a histamine inverse agonist on scopolamine deficits in humans. Psychopharmacology (Berl) 218:513–524

    Article  CAS  Google Scholar 

  • Deiana S, Platt B, Riedel G (2011) The cholinergic system and spatial learning. Behav Brain Res 221:389–411

    Article  PubMed  CAS  Google Scholar 

  • DeLuca J, Diamond BJ (1995) Aneurysm of the anterior communicating artery: a review of neuroanatomical and neuropsychological sequelae. J Clin Exp Neuropsychol 17:100–121

    Article  PubMed  CAS  Google Scholar 

  • Dimitrov M, Granetz J, Peterson M, Hollnagel C, Alexander G, Grafman J (1999) Associative learning impairments in patients with frontal lobe damage. Brain Cogn 41:213–230

    Article  PubMed  CAS  Google Scholar 

  • Drever BD, Riedel G, Platt B (2011) The cholinergic system and hippocampal plasticity. Behav Brain Res 221:505–514

    Article  PubMed  CAS  Google Scholar 

  • Easton A, Douchamps V, Eacott M, Lever C (2012) A specific role for septohippocampal acetylcholine in memory? Neuropsychologia 50:3156–3168

    Article  PubMed  Google Scholar 

  • Ebert U, Siepmann M, Oertel R, Wesnes KA, Kirch W (1998) Pharmacokinetics and pharmacodynamics of scopolamine after subcutaneous administration. J Clin Pharmacol 38:720–726

    Article  PubMed  CAS  Google Scholar 

  • Flicker C, Serby M, Ferris SH (1990) Scopolamine effects on memory, language, visuospatial praxis and psychomotor speed. Psychopharmacology (Berl) 100:243–250

    Article  CAS  Google Scholar 

  • Fowler KS, Saling MM, Conway EL, Semple JM, Louis WJ (2002) Paired associate performance in the early detection of DAT. J Int Neuropsychol Soc 8:58–71

    Article  PubMed  Google Scholar 

  • Fredrickson A, Snyder PJ, Cromer J, Thomas E, Lewis M, Maruff P (2008) The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine. Hum Psychopharmacol 23:425–436

    Article  PubMed  CAS  Google Scholar 

  • Furey ML, Ricciardi E, Schapiro MB, Rapoport SI, Pietrini P (2008) Cholinergic enhancement eliminates modulation of neural activity by task difficulty in the prefrontal cortex during working memory. J Cogn Neurosci 20:1342–1353

    Article  PubMed  Google Scholar 

  • Gaffan D, Parker A, Easton A (2001) Dense amnesia in the monkey after transection of fornix, amygdala and anterior temporal stem. Neuropsychologia 39:51–70

    Article  PubMed  CAS  Google Scholar 

  • Ginani GE, Tufik S, Bueno OF, Pradella-Hallinan M, Rusted J, Pompéia S (2011) Acute effects of donepezil in healthy young adults underline the fractionation of executive functioning. J Psychopharmacol 25:1508–1516

    Article  PubMed  CAS  Google Scholar 

  • Giocomo LM, Hasselmo ME (2007) Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Mol Neurobiol 36:184–200

    Article  PubMed  CAS  Google Scholar 

  • Gold P (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210

    Article  PubMed  CAS  Google Scholar 

  • Grön G, Kirstein M, Thielscher A, Riepe MW, Spitzer M (2005) Cholinergic enhancement of episodic memory in healthy young adults. Psychopharmacology (Berl) 182:170–179

    Article  Google Scholar 

  • Harel BT, Darby D, Pietrzak RH, Ellis KA, Snyder PJ, Maruff P (2011) Examining the nature of impairment in visual paired associate learning in amnestic mild cognitive impairment. Neuropsychology 25:752–762

    Article  PubMed  Google Scholar 

  • Hasselmo ME, Stern CE (2006) Mechanisms underlying working memory for novel information. Trends Cogn Sci 10:487–493

    Article  PubMed  Google Scholar 

  • Howe MN, Price IR (2001) Effects of transdermal nicotine on learning, memory, verbal fluency, concentration, and general health in a healthy sample at risk for dementia. Int Psychogeriatr 13:465–475

    Article  PubMed  CAS  Google Scholar 

  • Kay GG, Maruff P, Scholfield D, Malhotra B, Whelan L, Darekar A, Martire DL (2012) Evaluation of cognitive function in healthy older subjects treated with fesoterodine. Postgrad Med 124:7–15

    Article  PubMed  Google Scholar 

  • Kitagawa H, Takenouchi T, Azuma R, Wesnes KA, Kramer WG, Clody DE, Burnett AL (2003) Safety, pharmacokinetics, and effects on cognitive function of multiple doses of GTS-21 in healthy, male volunteers. Neuropsychopharmacology 28:542–551

    Article  PubMed  CAS  Google Scholar 

  • Koller G, Satzger W, Adam M, Wagner M, Kathmann N, Soyka M, Engel R (2003) Effects of scopolamine on matching to sample paradigm and related tests in human subjects. Neuropsychobiology 48:87–94

    Article  PubMed  CAS  Google Scholar 

  • Lenz RA, Baker JD, Locke C, Rueter LE, Mohler EG, Wesnes K, Abi-Saab W, Saltarelli MD (2012) The scopolamine model as a pharmacodynamic marker in early drug development. Psychopharmacology (Berl) 220:97–107

    Article  CAS  Google Scholar 

  • Lever C, Burton S, O'Keefe J (2006) Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev Neurosci 17:111–133

    PubMed  Google Scholar 

  • Lim YY, Ellis KA, Pietrzak RH et al (2012) Stronger effect of amyloid load than APOE genotype on cognitive decline in healthy older adults. Neurology 79:1645–1652

    Article  PubMed  CAS  Google Scholar 

  • Lindner MD, Hogan JB, Hodges DB et al (2006) Donepezil primarily attenuates scopolamine-induced deficits in psychomotor function, with moderate effects on simple conditioning and attention, and small effects on working memory and spatial mapping. Psychopharmacology (Berl) 188:629–640

    Article  CAS  Google Scholar 

  • Newman EL, Gupta K, Climer JR, Monaghan CK, Hasselmo ME (2012) Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci 6:24

    Article  PubMed  Google Scholar 

  • O'Donnell J, Pietrzak RH, Ellis KC, Snyder PJ, Maruff P (2011) Understanding failure of visual paired associate learning in amnestic mild cognitive impairment. J Clin Exp Neuropsychol

  • Pietrzak RH, Scott JC, Harel BT, Lim YY, Snyder PJ, Maruff P (2012) A process-based approach to characterizing the effect of acute alprazolam challenge on visual paired associate learning and memory in healthy older adults. Hum Psychopharmacol

  • Pike KE, Rowe CC, Moss SA, Savage G (2008) Memory profiling with paired associate learning in Alzheimer's disease, mild cognitive impairment, and healthy aging. Neuropsychology 22:718–728

    Article  PubMed  CAS  Google Scholar 

  • Poreh AM (2000) The quantified process approach: an emerging methodology to neuropsychological assessment. Clin Neuropsychol 14:212–222

    Article  PubMed  CAS  Google Scholar 

  • Poreh AM. (2006) The quantified process approach to neuropsychological assessment. New York

  • Poucet B, Benhamou S (1997) The neuropsychology of spatial cognition in the rat. Crit Rev Neurobiol 11:101–120

    Article  PubMed  CAS  Google Scholar 

  • Power AE, Vazdarjanova A, McGaugh JL (2003) Muscarinic cholinergic influences in memory consolidation. Neurobiol Learn Mem 80:178–193

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Semple J, Kumar R et al (1997) Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects: comparison with diazepam and implications for dementia. Psychopharmacology (Berl) 134:95–106

    Article  CAS  Google Scholar 

  • Rogers JL, Kesner RP (2003) Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol Learn Mem 80:332–342

    Article  PubMed  CAS  Google Scholar 

  • Rusted JM, Warburton DM (1988) The effects of scopolamine on working memory in healthy young volunteers. Psychopharmacology (Berl) 96:145–152

    CAS  Google Scholar 

  • Shimamura AP, Jurica PJ, Mangels JA, Gershberg FB, Knight RT (1995) Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associate learning. J Cogn Neurosci 7:144–152

    Article  Google Scholar 

  • Snyder PJ, Bednar MM, Cromer JR, Maruff P (2005) Reversal of scopolamine-induced deficits with a single dose of donepezil, an acetylcholinesterase inhibitor. Alzheimer's & Dementia 1:126–135

    Article  CAS  Google Scholar 

  • Swainson R, Hodges JR, Galton CJ et al (2001) Early detection and differential diagnosis of Alzheimer's disease and depression with neuropsychological tasks. Dement Geriatr Cogn Disord 12:265–280

    Article  PubMed  CAS  Google Scholar 

  • Taffe MA, Weed MR, Gutierrez T, Davis SA, Gold LH (2002) Differential muscarinic and NMDA contributions to visuo-spatial paired-associate learning in rhesus monkeys. Psychopharmacology (Berl) 160:253–262

    Article  CAS  Google Scholar 

  • Thomas E, Snyder PJ, Pietrzak RH, Jackson CE, Bednar M, Maruff P (2008) Specific impairments in visuospatial working and short-term memory following low-dose scopolamine challenge in healthy older adults. Neuropsychologia 46:2476–2484

    Article  PubMed  Google Scholar 

  • Voss B, Thienel R, Reske M, Habel U, Kircher T (2010) Cognitive performance and cholinergic transmission: influence of muscarinic and nicotinic receptor blockade. Eur Arch Psychiatry Clin Neurosci 260(Suppl 2):S106–S110

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Drs. Harel and Maruff are full time employees of CogState, a cognitive test company that provided the test used in this study. Drs. Pietrzak and Snyder are consultants to this company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Harel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harel, B.T., Pietrzak, R.H., Snyder, P.J. et al. Effect of cholinergic neurotransmission modulation on visual spatial paired associate learning in healthy human adults. Psychopharmacology 228, 673–683 (2013). https://doi.org/10.1007/s00213-013-3072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3072-2

Keywords

Navigation