Skip to main content
Log in

Early effects of mood stabilizers on the Akt/GSK-3β signaling pathway and on cell survival and proliferation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Lithium, some of the anticonvulsants, and several second-generation antipsychotic drugs are common medications widely prescribed to treat bipolar disorder. Molecular targets and cellular events that mediate their effects have been described for these drugs but are only partially unraveled. Few comparative studies have been performed.

Objectives

We evaluated seven mood stabilizers (MS) in the same in vitro system and found several differences and similarities in their cellular mechanisms (proliferation and cell survival). As some MS were previously shown to activate the Akt/GSK-3β axis, this pathway was explored for other drugs.

Materials and methods

The SH-SY5Y cells were cultured in RPMI-1640 medium. Effects of MS drugs on serum-induced cell proliferation and on slowing of cell death were analyzed. Phosphorylation and expression of Akt-1 and GSK-3β mRNA and protein were assessed for the seven drugs as well.

Results

Lithium, Valproate, Olanzapine, and Clozapine enhance proliferation and protect cells against serum withdrawal-induced injury. These drugs also activate Akt-1 and GSK-3β phosphorylation. Interestingly, gene expression of Akt-1 mRNA and protein, but not GSK-3β, was increased. The other drugs Lamotrigine, Haloperidol, and Carbamazepine did not affect cellular events nor activate Akt/GSK-3β axis.

Conclusion

Valproate and atypical antipsychotics (Olanzapine and Clozapine) regulate SH-SY5Y cell proliferation and survival, activate the Akt/GSK-3β axis, and stimulate gene expression of Akt-1 mRNA and protein, as does Lithium. The other medications have no effect. The study shows the importance of the Akt/GSK-3 axis in MS actions but also pinpoints a different dependence of these drugs on this signaling axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubry JM, Ferrero F, Schaad N (2007) Pharmachotherapy of bipolar disorders. J Wiley (ed.), Chester

  • Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327–347

    Article  PubMed  CAS  Google Scholar 

  • Bowden CL, Brugger AM, Swann AC, Calabresse JR, Janicak PG (1994) Efficacy of divalproex vs lithium and placebo in the treatment of mania. The Depakote Mania Study group. J Am Med Association 271:918–924

    Article  CAS  Google Scholar 

  • Bowden CL (1996) Dosing strategies and time course of response to antimanic drugs. J Clin Psychiatry 57(Suppl 13):4–9

    PubMed  CAS  Google Scholar 

  • Brambilla P, Barale F, Soares JC (2003) Atypical antipsychotics and mood stabilization in bipolar disorder. Psychopharmacology 166:315–332

    PubMed  CAS  Google Scholar 

  • Brunet A, Datta SR, Greenberg M (2001) Transcription-dependent and –independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 11:297–305

    Google Scholar 

  • Calabrese JR, Huffman RF, White RL, Edwards S et al (2008) Lamotrigine in the acute treatment of bipolar depression: results of five double-blind, placebo-controlled clinical trials. Bipolar Disord 2008(10):323–333

    Article  Google Scholar 

  • Chen G, Hasanat KA, Bebchuk JM, Moore GJ, Glitz D, Manji HK (1999) Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosomatic Med 61:599–617

    CAS  Google Scholar 

  • Chuang DM (2005) The Antiapoptotic Actions of Mood Stabilizers: Molecular Mechanisms and Therapeutic Potentials. Annals of New York Academy of Science 1053:195–204

    Article  CAS  Google Scholar 

  • Ciapparelli A, Dell'Osso L, Pini S, Chiavacci MC, Fenzi M, Cassano GB (2000) Clozapine for treatment-refractory schizophrenia, schizoaffective disorder, and psychotic bipolar disorder: a 24-month naturalistic study. J Clin Psychiatry 61:329–334

    Google Scholar 

  • Ciapparelli A, Dell'Osso L, Bandettini di Poggio A, Carmassi C, Cecconi D, Cassano GB (2003) Clozapine in treatment-resistant patients with schizophrenia, schizoaffective disorder or psychotic bipolar disorder: a naturalistic 48-month follow-up study. J Clin Psychiatry 64:451–458

    Article  Google Scholar 

  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995). Inhibition of glycogen synthase kinase-3 by insulin-mediated Protein kinase B. Nature 378:785–789

    Google Scholar 

  • De Sarno P, Li X, Jope RS (2002) Regulation of Akt and glycogen synthase kinase-3β phosphorylation by sodium valproate and lithium. Neurpharmacology 43:1158–1164

    Article  Google Scholar 

  • Di Daniel E, Mudge AW, Maycox PR (2005) Comparative analysis of the effects of four mood stabilizers in SH-SY5Y cells and in primary neurons. Bipolar Disorder 7:33–41

    Article  Google Scholar 

  • Dwyer DS, Lu X-H, Freeman AM (2003) Neuronal glucose metabolism and schizophrenia: therapeutic prospects? Expert Rev Neurotherapeutics 3:29–40

    Article  CAS  Google Scholar 

  • Gelenberg AJ, Hopkins HS (1996) Antipsychotics in bipolar disorder. J Clin Psychiatry 57(Suppl 9):49–52

    PubMed  Google Scholar 

  • Gould TD, Quiroz JA, Sing J, Zarate CA, Manji HK (2004) Emerging experimental therapeutics for bipolar disorder; insights from the molecular and cellular actions of current mood stabilzers. Mol Psychiatry 9:734–755

    Article  PubMed  CAS  Google Scholar 

  • Grimes RS, Jope CA (2001) The multifaceted roles of glycogen synthase kinase 3β in cellular signalling. Progr Neurobiology 65:391–426

    Article  CAS  Google Scholar 

  • Gurvich N, Klein PS (2002) Lithium and Valproic acid: parallels and contrasts in diverse signaling contexts. Pharmacol Ther 96:45–66

    Article  PubMed  CAS  Google Scholar 

  • Hajduch E, Litherland GJ, Hundal HS (2001) Protein kinase B (PKB/Akt)—a key regulator of glucose transport? FEBS Lett 492:199–203

    Article  PubMed  CAS  Google Scholar 

  • Harwood AJ, Agam G (2003) Search for common mechanism for mood stabilizers as plasticity enhancers in the treatment of neuropsychiatric disorders. J Clin Psychiatry 64(Suppl 5):179–189

    Google Scholar 

  • Heiser P, Enning F, Krieg J-C, Vedder H (2007) Effects of haloperidol, clozapine and olanzapine on the survival of human neuronal and immune cells in vitro. J Psychopharmacol 21:851–856

    Article  PubMed  CAS  Google Scholar 

  • Hsiung SC, Adlersberg M, Arango V, Mann JJ, Tamir H, Liu KP (2003) Attenuated 5-HT1A receptor signaling in brains of suicide victims: involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinase. J Neurochem 87:162–194

    Article  CAS  Google Scholar 

  • Jope RS, Williams MB (1994) Lithium and brain signal transduction systems. Bioch Pharmacology 47:429–441

    Article  CAS  Google Scholar 

  • Jope RS, Johnson GVW (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    Article  PubMed  CAS  Google Scholar 

  • Jope RS, Bijur GN (2002) Mood stabilizers, glycogen synthase kinase-3beta and cell survival. Mol Psychiatry 7(Suppl 1):S35–S45

    Article  PubMed  CAS  Google Scholar 

  • Kahle PJ, Maas JW (1997) Use of CellTiter 96 reagents in semi automatic assay of neuronal survival. Neural Notes 3:12–14

    Google Scholar 

  • Kang UG, Seo MS, Roh MS, Kim Y, Yoon SC, Kim YS (2004) The effects of clozapine on the GSK-3-mediated signaling pathway. FEBS Lett 560:11–119

    Article  CAS  Google Scholar 

  • Karege F, Perroud N, Burkhardt S, Schwald M, Ballmann E, La Harpe R, Malafosse A (2007) Alteration in Kinase activity but not in protein levels of kinase B and glycogen synthase kinase-3β in ventral prefrontal cortex of depressed suicide victims. Biol Psychiatry 61:240–245

    Article  PubMed  CAS  Google Scholar 

  • Kim NR, Park SW, Lee JG, Kim YH (2008) Protective effects of olanzapine and haloperidol on serum withdrawal-induced apoptosis in SH-SY5Y cells. Prog Neuro-Psychopharmacol Biol Psychiatry 32:633–642

    Article  CAS  Google Scholar 

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. PNAS USA 93:8455–8459

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Schulz A, Wiltfang J et al (1999) Persistance of haloperidol in human brain tissue. Am J Psychiatry 156:885–890

    PubMed  CAS  Google Scholar 

  • Kozlovsky N, Amar S, Belmaker TH, Agam G (2006) Psychoptropic drugs affect ser9-phosphorylated GSK-3β protein levels in rident frontal cortex. Int J Neuropsychopharmacol 9:337–342

    Article  PubMed  CAS  Google Scholar 

  • Lawlor M, Alessi D (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Science 114:2903–2910

    PubMed  CAS  Google Scholar 

  • Lesort M, Greendorfer A, Stockmeier C, Johnson GV, Jope RS (1999) Glycogen synthase kinase-3beta, beta-catenin, and tau in postmortem bipolar brain. J Neural Transm 106:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Li R, El-Mallahk RS (2000) A novel evidence of different mechanisms of lithium and valproate neuroprotective action on human SY5Y neuroblatoma cells: caspase-3 dependency. Neurosci Lett 294:147–150

    Article  PubMed  CAS  Google Scholar 

  • Li X, Bijur GN, Jope RS (2002) Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disorder 4:137–144

    Article  CAS  Google Scholar 

  • Li X, Zhu W, Roh MS, Friedman AB, Rosborough K, Jope RS (2004) In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology 29:1426-31

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(delta-delta) Ct method. Methods 25(4):412–408

    Article  CAS  Google Scholar 

  • Lu X-H, Bradley RJ, Dwyer DS (2004) Olanzapine produces trophic effects in vitro and stimulates phopshotylation of Akt/PKB, ERK1/2 and the mitogen-activated protein kinase p38. Brain Research 1011:58–68

    Article  PubMed  CAS  Google Scholar 

  • Manji HK, Moora GJ, Chen G (1999) Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol Psychiatry 46:949–940

    Google Scholar 

  • Manji HK, Duman RS (2001) Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 35:5–49

    PubMed  CAS  Google Scholar 

  • Moore GJ, Bebchuk JM, Wids IB, Chen G, Manji HK (2000) Lithium-induced increase in human brain grey matter. Lancet 356:1241–1242

    Article  PubMed  CAS  Google Scholar 

  • Olesen OV, Linnet K (1999) Olanzapine serum concentration in psychiatric patients given standard doses: the influence of comediacation. Ther Drug Monit 21:87–90

    Article  PubMed  CAS  Google Scholar 

  • Pandey GN, Dwivedi Y, Rizavi HS et al (2009) GSK-3β gene expression in human postmortem brain: regional distribution, effects of age and suicide. Neurochem Res 34:274–285

    Article  PubMed  CAS  Google Scholar 

  • Perry PJ, Bever KA, Arndt S, Combs MD (1998) Relationship between patient variables and plasma clozapine concentrations: a dosing nomogram. Biol Psychiatry 44:733–738

    Article  PubMed  CAS  Google Scholar 

  • Robertson MD, McMullin MM (2000) Olanzapine concentrations in clinical serum and postmortem blood specimens–when does therapeutic become toxic? J Forensic Sci 45:418–421

    PubMed  CAS  Google Scholar 

  • Roh M-S, Seo MS, Kim Y et al (2007) Haloperidol and clozapine differently regulate signals upstream of glycogen synthase kinase-3 in the rat frontal cortex. Exp Mol Med 39:353–360

    PubMed  CAS  Google Scholar 

  • Sheline YI (2003) Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 54:338–352

    Article  PubMed  Google Scholar 

  • Shin SY, Choi BH, Ko J, Kim SH, Kim YS, Lee YH (2006) Clozapine, a neuroleptic agent, inhibits Akt by counteracting Ca ± 2/calmodulin in PTEN-negative U-87MG human glioblastoma cells. Cell Signalling 18:1876–1886

    Article  PubMed  CAS  Google Scholar 

  • Simhandl C, Denk E, Thau K (1993) The comparative efficacy of carbamazepine low and high serum level and lithium carbonate in the prophylaxis of affective disorders. J Affect Disord 28(4):221–231

    Article  PubMed  CAS  Google Scholar 

  • Stambolic V, Ruel L, Woodgett JR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signaling in intact cells. Curr Biol. 6:1664–1668

    Article  PubMed  CAS  Google Scholar 

  • Tsai SJ, Liou YJ, Hong CJ, Yu YW, Chen TJ (2008) Glycogen synthase kinase-3β gene is associated with antidepressant treatment response in Chinese major depressive disorder. Pharmacogenomics J 8:384–390

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Hagan RM (1998) Cellular and molecular actions of lamotrigine: possible mechanisms of efficacy in bipolar disorder. Neuropsychobiology 38:119–130

    Article  PubMed  CAS  Google Scholar 

  • Yatham LN, Goldstein JM, Vieta E et al (2005) Atypical antipsychotics in Bipolar depression: potential mechanisms of action. J Clin Psychiatry 66:40–48

    PubMed  CAS  Google Scholar 

  • Yatham LN, Kennedy SH, O'Donovan C, Parikh SV, MacQueen G, McIntyre RS, Sharma V, Beaulieu S (2006) Canadian Network for Mood and Anxiety Treatments (CANMAT) guidelines for the management of patients with bipolar disorder: update 2007. Bipolar Disorder 8:721–739

    Article  CAS  Google Scholar 

  • Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X (2005) A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature 438:873–877

    Google Scholar 

Download references

Aknowledgments

The authors thank Mrs Pascale Marin for her technical support. All the experiments complied with the current laws of Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félicien Karege.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, JM., Schwald, M., Ballmann, E. et al. Early effects of mood stabilizers on the Akt/GSK-3β signaling pathway and on cell survival and proliferation. Psychopharmacology 205, 419–429 (2009). https://doi.org/10.1007/s00213-009-1551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1551-2

Keywords

Navigation