Skip to main content
Log in

Neurochemical, behavioral, and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Serotonin transporter (SERT) knockout (−/−) mice have an altered phenotype in adulthood, including high baseline anxiety and depressive-like behaviors, associated with increased baseline extracellular serotonin levels throughout life.

Objectives

To examine the effects of increases in serotonin following the administration of the serotonin precursor 5-hydroxy-l-tryptophan (5-HTP) in SERT wild-type (+/+), heterozygous (+/−), and −/− mice.

Results

5-HTP increased serotonin in all five brain areas examined with approximately 2- to 5-fold increases in SERT+/+ and +/− mice, and with greater 4.5- to 11.7-fold increases in SERT−/− mice. Behaviorally, 5-HTP induced exaggerated serotonin syndrome behaviors in SERT−/−, mice with similar effects in male and female mice. Studies suggest promiscuous serotonin uptake by the dopamine transporter (DAT) in SERT−/− mice, and here, the DAT blocker GBR 12909 enhanced 5-HTP-induced behaviors in SERT−/− mice. Physiologically, 5-HTP induced exaggerated temperature effects in SERT-deficient mice. The 5-HT1A antagonist WAY 100635 decreased 5-HTP-induced hypothermia in SERT+/+ and +/− mice with no effect in SERT−/− mice, whereas the 5-HT7 antagonist SB 269970 decreased this exaggerated response in SERT−/− mice only. WAY 100635 and SB 269970 together completely blocked 5-HTP-induced hypothermia in SERT+/− and −/− mice.

Conclusions

These studies demonstrate that SERT−/− mice have exaggerated neurochemical, behavioral, and physiological responses to further increases in serotonin, and provide the first evidence of intact 5-HT7 receptor function in SERT−/− mice, with interesting interactions between 5-HT1A and 5-HT7 receptors. As roles for 5-HT7 receptors in anxiety and depression were recently established, the current findings have implications for understanding the high anxiety and depressive-like phenotype of SERT-deficient mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandre C, Popa D, Fabre V, Bouali S, Venault P, Lesch KP, Hamon M, Adrien J (2006) Early life blockade of 5-hydroxytryptamine 1A receptors normalizes sleep and depression-like behavior in adult knock-out mice lacking the serotonin transporter. J Neurosci 26:5554–5564

    Article  PubMed  CAS  Google Scholar 

  • Andrews AM, Murphy DL (1993) Sustained depletion of cortical and hippocampal serotonin and norepinephrine but not striatal dopamine by 1-methyl-4-(2′-aminophenyl)-1,2,3,6-tetrahydropyridine (2′-NH2-MPTP): a comparative study with 2′-CH3-MPTP and MPTP. J Neurochem 60:1167–1170

    Article  PubMed  CAS  Google Scholar 

  • Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879–881

    Article  PubMed  CAS  Google Scholar 

  • Ansorge MS, Morelli E, Gingrich JA (2008) Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28:199–207

    Article  PubMed  CAS  Google Scholar 

  • Baker GB, LeGatt DF, Coutts RT, Dewhurst WG (1984) Rat brain concentrations of 5-hydroxytryptamine following acute and chronic administration of MAO-inhibiting antidepressants. Prog Neuro-psychopharmacol Biol Psychiatry 8:653–656

    Article  CAS  Google Scholar 

  • Bannon MJ, Sacchetti P, Granneman JG (1998) The dopamine transporter: potential involvement in neuropsychiatric disorders. In: Watson SJ (ed) Psychopharmacology: The fourth generation of progress. Raven Press Ltd., New York, NY., (Available at http://www.acnp.org/G4/toc.htm)

    Google Scholar 

  • Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A, Mossner R, Westphal H, Lesch KP (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxymethamphetamine (“ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53:649–655

    PubMed  CAS  Google Scholar 

  • Bill DJ, Knight M, Forster EA, Fletcher A (1991) Direct evidence for an important species difference in the mechanism of 8-OH-DPAT-induced hypothermia. Br J Pharmacol 103:1857–1864

    PubMed  CAS  Google Scholar 

  • Blakely RD, Berson HE, Fremeau RT Jr., Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354:66–70

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure P, Nepomuceno D, Kwok A, Chai W, Langlois X, Hen R, Stark K, Carruthers N, Lovenberg TW (2002) Reconsideration of 5-hydroxytryptamine (5-HT)(7) receptor distribution using [(3)H]5-carboxamidotryptamine and [(3)H]8-hydroxy-2-(di-n-propylamino)tetraline: analysis in brain of 5-HT(1A) knockout and 5-HT(1A/1B) double-knockout mice. J Pharmacol Exp Ther 302:240–248

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure P, Kelly L, Aluisio L, Shelton J, Lord B, Galici R, Miller K, Lovenberg TW, Atack J, Dugovic C (2007) Selective blockade of 5-HT7 receptors enhances 5-HT transmission, antidepressant-like behavior and REM sleep suppression induced by citalopram in rodents. J Pharmacol Exp Ther 321:690–698

    Article  PubMed  CAS  Google Scholar 

  • Bouali S, Evrard A, Chastanet M, Lesch KP, Hamon M, Adrien J (2003) Sex hormone-dependent desensitization of 5-HT1A autoreceptors in knockout mice deficient in the 5-HT transporter. Eur J Neurosci 18:2203–12

    Article  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  • Fabre V, Beaufour C, Evrard A, Rioux A, Hanoun N, Lesch KP, Murphy DL, Lanfumey L, Hamon M, Martres MP (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12:2299–2310

    Article  PubMed  CAS  Google Scholar 

  • Faure C, Mnie-Filali O, Scarna H, Debonnel G, Haddjeri N (2006) Effects of the 5-HT7 receptor antagonist SB-269970 on rat hormonal and temperature responses to the 5-HT1A/7 receptor agonist 8-OH-DPAT. Neurosci Lett 404:122–126

    Article  PubMed  CAS  Google Scholar 

  • Fox M, Jensen C, Gallagher P, Murphy D (2007a) Receptor mediation of exaggerated responses to serotonin-enhancing drugs in serotonin transporter (SERT)-deficient mice. Neuropharmacology 53:643–656

    Article  PubMed  CAS  Google Scholar 

  • Fox MA, Andrews AM, Wendland JR, Lesch KP, Holmes A, Murphy DL (2007b) A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. Psychopharmacology (Berl) 195:147–166

    Article  CAS  Google Scholar 

  • Garcia-Alcocer G, Segura LC, Garcia Pena M, Martinez-Torres A, Miledi R (2006) Ontogenetic distribution of 5-HT2C, 5-HT5A, and 5-HT7 receptors in the rat hippocampus. Gene Expr 13:53–57

    Article  PubMed  CAS  Google Scholar 

  • Gobbi G, Murphy DL, Lesch K, Blier P (2001) Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296:987–995

    PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, Weisstaub N, Hen R, Gingrich JA, Sealfon SC (2003) Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci 23:8836–8843

    PubMed  CAS  Google Scholar 

  • Goodwin GM, De Souza RJ, Green AR (1985) The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). A model of presynaptic 5-HT1 function. Neuropharmacology 24:1187–1194

    Article  PubMed  CAS  Google Scholar 

  • Goodwin GM, De Souza RJ, Wood AJ, Green AR (1986) The enhancement by lithium of the 5-HT1A mediated serotonin syndrome produced by 8-OH-DPAT in the rat: evidence for a post-synaptic mechanism. Psychopharmacology (Berl) 90:488–493

    CAS  Google Scholar 

  • Goodwin GM, De Souza RJ, Green AR (1987a) Attenuation by electroconvulsive shock and antidepressant drugs of the 5-HT1A receptor-mediated hypothermia and serotonin syndrome produced by 8-OH-DPAT in the rat. Psychopharmacology (Berl) 91:500–505

    Article  CAS  Google Scholar 

  • Goodwin GM, De Souza RJ, Green AR, Heal DJ (1987b) The pharmacology of the behavioural and hypothermic responses of rats to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Psychopharmacology (Berl) 91:506–511

    Article  CAS  Google Scholar 

  • Guscott MR, Egan E, Cook GP, Stanton JA, Beer MS, Rosahl TW, Hartmann S, Kulagowski J, McAllister G, Fone KC, Hutson PH (2003) The hypothermic effect of 5-CT in mice is mediated through the 5-HT7 receptor. Neuropharmacology 44:1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Guscott M, Bristow LJ, Hadingham K, Rosahl TW, Beer MS, Stanton JA, Bromidge F, Owens AP, Huscroft I, Myers J, Rupniak NM, Patel S, Whiting PJ, Hutson PH, Fone KC, Biello SM, Kulagowski JJ, McAllister G (2005) Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology 48:492–502

    Article  PubMed  CAS  Google Scholar 

  • Hagan JJ, Price GW, Jeffrey P, Deeks NJ, Stean T, Piper D, Smith MI, Upton N, Medhurst AD, Middlemiss DN, Riley GJ, Lovell PJ, Bromidge SM, Thomas DR (2000) Characterization of SB-269970-A, a selective 5-HT(7) receptor antagonist. Br J Pharmacol 130:539–548

    Article  PubMed  CAS  Google Scholar 

  • Hariri AR, Holmes A (2006) Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci 10:182–191

    Article  PubMed  Google Scholar 

  • Hedlund PB, Danielson PE, Thomas EA, Slanina K, Carson MJ, Sutcliffe JG (2003) No hypothermic response to serotonin in 5-HT7 receptor knockout mice. Proc Natl Acad Sci USA 100:1375–1380

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Kelly L, Mazur C, Lovenberg T, Sutcliffe JG, Bonaventure P (2004) 8-OH-DPAT acts on both 5-HT1A and 5-HT7 receptors to induce hypothermia in rodents. Eur J Pharmacol 487:125–132

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG (2005) 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry 58:831–837

    Article  PubMed  CAS  Google Scholar 

  • Heydorn WE (1999) Paroxetine: a review of its pharmacology, pharmacokinetics and utility in the treatment of a variety of psychiatric disorders. Expert Opin Investig Drugs 8:417–441

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Yang RJ, Murphy DL, Crawley JN (2002) Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27:914–923

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Li Q, Murphy DL, Gold E, Crawley JN (2003a) Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2:365–380

    Article  PubMed  CAS  Google Scholar 

  • Holmes A, Yang RJ, Lesch KP, Crawley JN, Murphy DL (2003b) Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28:2077–2088

    PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  • Hu XZ, Lipsky RH, Zhu G, Akhtar LA, Taubman J, Greenberg BD, Xu K, Arnold PD, Richter MA, Kennedy JL, Murphy DL, Goldman D (2006) Serotonin transporter promoter gain-of-function genotypes are linked to obsessive–compulsive disorder. Am J Hum Genet 78:815–826

    Article  PubMed  CAS  Google Scholar 

  • Izumi T, Iwamoto N, Kitaichi Y, Kato A, Inoue T, Koyama T (2006) Effects of co-administration of a selective serotonin reuptake inhibitor and monoamine oxidase inhibitors on 5-HT-related behavior in rats. Eur J Pharmacol 532:258–264

    Article  PubMed  CAS  Google Scholar 

  • Jacobs BL (1976) An animal behavior model for studying central serotonergic synapses. Life Sci 19:777–785

    Article  PubMed  CAS  Google Scholar 

  • Jones BJ, Blackburn TP (2002) The medical benefit of 5-HT research. Pharmacol Biochem Behav 71:555–568

    Article  PubMed  CAS  Google Scholar 

  • Kalueff AV, Fox MA, Gallagher PS, Murphy DL (2007) Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice. Genes Brain Behav 6:389–400

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Dickinson SL, Curzon G (1985) Central serotonergic responses and behavioural adaptation to repeated immobilisation: the effect of the corticosterone synthesis inhibitor metyrapone. Eur J Pharmacol 119:143–152

    Article  PubMed  CAS  Google Scholar 

  • Kim DK, Tolliver TJ, Huang SJ, Martin BJ, Andrews AM, Wichems C, Holmes A, Lesch KP, Murphy DL (2005) Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49:798–810

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Wichems C, Heils A, Van De Kar LD, Lesch KP, Murphy DL (1999) Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. J Pharmacol Exp Ther 291:999–1007

    PubMed  CAS  Google Scholar 

  • Li Q, Wichems C, Heils A, Lesch KP, Murphy DL (2000) Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 20:7888–7895

    PubMed  CAS  Google Scholar 

  • Lucki I, Nobler MS, Frazer A (1984) Differential actions of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat. J Pharmacol Exp Ther 228:133–139

    PubMed  CAS  Google Scholar 

  • Martin KF, Phillips I, Hearson M, Prow MR, Heal DJ (1992) Characterization of 8-OH-DPAT-induced hypothermia in mice as a 5-HT1A autoreceptor response and its evaluation as a model to selectively identify antidepressants. Br J Pharmacol 107:15–21

    PubMed  CAS  Google Scholar 

  • Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM (2004) Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 140:169–181

    Article  PubMed  CAS  Google Scholar 

  • McKim RH, Calverly DG, Dewhurst WG, Baker GB (1983) Regional concentrations of cerebral amines: effects of tranylcypromine and phenelzine. Prog Neuro-psychopharmacol Biol Psychiatry 7:783–786

    Article  CAS  Google Scholar 

  • Montanez S, Owens WA, Gould GG, Murphy DL, Daws LC (2003) Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J Neurochem 86:210–219

    Article  PubMed  CAS  Google Scholar 

  • Mossner R, Simantov R, Marx A, Lesch KP, Seif I (2006) Aberrant accumulation of serotonin in dopaminergic neurons. Neurosci Lett 401:49–54

    Article  PubMed  Google Scholar 

  • Moya PR, Berg KA, Gutierrez-Hernandez MA, Saez-Briones P, Reyes-Parada M, Cassels BK, Clarke WP (2007) Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J Pharmacol Exp Ther 321:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Murphy DL, Lesch KP (2008) Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9:85–96

    Article  PubMed  CAS  Google Scholar 

  • Murphy DL, Andrews AM, Wichems CH, Li Q, Tohda M, Greenberg B (1998) Brain serotonin neurotransmission: an overview and update with an emphasis on serotonin subsystem heterogeneity, multiple receptors, interactions with other neurotransmitter systems, and consequent implications for understanding the actions of serotonergic drugs. J Clin Psychiatry 59(Suppl 15):4–12

    PubMed  CAS  Google Scholar 

  • Murphy DL, Lerner A, Rudnick G, Lesch KP (2004) Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv 4:109–123

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ, Nemeroff CB (1998) The serotonin transporter and depression. Depress Anxiety 8(Suppl 1):5–12

    Article  PubMed  Google Scholar 

  • Pan Y, Gembom E, Peng W, Lesch KP, Mossner R, Simantov R (2001) Plasticity in serotonin uptake in primary neuronal cultures of serotonin transporter knockout mice. Brain Res Dev Brain Res 126:125–129

    Article  PubMed  CAS  Google Scholar 

  • Persico AM, Mengual E, Moessner R, Hall FS, Revay RS, Sora I, Arellano J, DeFelipe J, Gimenez-Amaya JM, Conciatori M, Marino R, Baldi A, Cabib S, Pascucci T, Uhl GR, Murphy DL, Lesch KP, Keller F (2001) Barrel pattern formation requires serotonin uptake by thalamocortical afferents, and not vesicular monoamine release. J Neurosci 21:6862–6873

    PubMed  CAS  Google Scholar 

  • Popa D, Lena C, Alexandre C, Adrien J (2008) Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: evidence from sleep, stress, and behavior. J Neurosci 28:3546–3554

    Article  PubMed  CAS  Google Scholar 

  • Praschak-Rieder N, Kennedy J, Wilson AA, Hussey D, Boovariwala A, Willeit M, Ginovart N, Tharmalingam S, Masellis M, Houle S, Meyer JH (2007) Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [(11)C] DASB positron emission tomography study. Biol Psychiatry 62:327–331

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Villacreses N, Murphy DL, Rapoport SI (2005) 5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology (Berl) 180:12–20

    Article  CAS  Google Scholar 

  • Ravary A, Muzerelle A, Darmon M, Murphy DL, Moessner R, Lesch KP, Gaspar P (2001) Abnormal trafficking and subcellular localization of an N-terminally truncated serotonin transporter protein. Eur J Neurosci 13:1349–1362

    Article  PubMed  CAS  Google Scholar 

  • Schmitt A, Mossner R, Gossmann A, Fischer IG, Gorboulev V, Murphy DL, Koepsell H, Lesch KP (2003) Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. J Neurosci Res 71:701–709

    Article  PubMed  CAS  Google Scholar 

  • Serretti A, Benedetti F, Zanardi R, Smeraldi E (2005) The influence of Serotonin Transporter Promoter Polymorphism (SERTPR) and other polymorphisms of the serotonin pathway on the efficacy of antidepressant treatments. Prog Neuro-psychopharmacol Biol Psychiatry 29:1074–1084

    Article  CAS  Google Scholar 

  • Sharp T, Boothman L, Raley J, Queree P (2007) Important messages in the ‘post’: recent discoveries in 5-HT neurone feedback control. Trends Pharmacol Sci 28:629–636

    Article  PubMed  CAS  Google Scholar 

  • Shen HW, Hagino Y, Kobayashi H, Shinohara-Tanaka K, Ikeda K, Yamamoto H, Yamamoto T, Lesch KP, Murphy DL, Hall FS, Uhl GR, Sora I (2004) Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29:1790–1799

    Article  PubMed  CAS  Google Scholar 

  • Sheridan D, Wichems C, Murphy D, Andrews A (1999) The effects of PCPA on monoamine neurotransmitter levels in mice with a disruption of the serotonin transporter gene. Proceedings of the 29th Annual Meeting of the Society for Neuroscience

  • Smith LM, Peroutka SJ (1986) Differential effects of 5-hydroxytryptamine1a selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav 24:1513–1519

    Article  PubMed  CAS  Google Scholar 

  • Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, Wichems C, Lesch KP, Murphy DL, Uhl GR (2001) Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci USA 98:5300–5305

    Article  PubMed  CAS  Google Scholar 

  • Tjurmina OA, Armando I, Saavedra JM, Goldstein DS, Murphy DL (2002) Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 143:4520–4526

    Article  PubMed  CAS  Google Scholar 

  • Uher R, McGuffin P (2008) The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Mol Psychiatry 13:131–146

    Article  PubMed  CAS  Google Scholar 

  • Vizuete ML, Venero JL, Traiffort E, Vargas C, Machado A, Cano J (1997) Expression of 5-HT7 receptor mRNA in rat brain during postnatal development. Neurosci Lett 227:53–56

    Article  PubMed  CAS  Google Scholar 

  • Wellman CL, Izquierdo A, Garrett JE, Martin KP, Carroll J, Millstein R, Lesch KP, Murphy DL, Holmes A (2007) Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 27:684–691

    Article  PubMed  CAS  Google Scholar 

  • Wesolowska A, Nikiforuk A, Stachowicz K (2006a) Potential anxiolytic and antidepressant effects of the selective 5-HT7 receptor antagonist SB 269970 after intrahippocampal administration to rats. Eur J Pharmacol 553:185–190

    Article  PubMed  CAS  Google Scholar 

  • Wesolowska A, Nikiforuk A, Stachowicz K, Tatarczynska E (2006b) Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51:578–586

    Article  PubMed  CAS  Google Scholar 

  • Wesolowska A, Tatarczynska E, Nikiforuk A, Chojnacka-Wojcik E (2007) Enhancement of the anti-immobility action of antidepressants by a selective 5-HT(7) receptor antagonist in the forced swimming test in mice. Eur J Pharmacol 555:43–47

    Article  PubMed  CAS  Google Scholar 

  • Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706

    PubMed  CAS  Google Scholar 

  • Wisor JP, Wurts SW, Hall FS, Lesch KP, Murphy DL, Uhl GR, Edgar DM (2003) Altered rapid eye movement sleep timing in serotonin transporter knockout mice. NeuroReport 14:233–238

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Sari Y, Zhou FC (2004) Selective serotonin reuptake inhibitor disrupts organization of thalamocortical somatosensory barrels during development. Brain Res Dev Brain Res 150:151–161

    Article  PubMed  CAS  Google Scholar 

  • Yamada J, Sugimoto Y, Horisaka K (1988) The behavioural effects of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in mice. Eur J Pharmacol 154:299–304

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Edwards J, Carroll J, Wiedholz L, Millstein RA, Jaing C, Murphy DL, Lanthorn TH, Holmes A (2006) Insertion mutation at the C-terminus of the serotonin transporter disrupts brain serotonin function and emotion-related behaviors in mice. Neuroscience 140:321–334

    Article  PubMed  CAS  Google Scholar 

  • Zhou FC, Lesch KP, Murphy DL (2002) Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res 942:109–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIMH Intramural Research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meredith A. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, M.A., Jensen, C.L., French, H.T. et al. Neurochemical, behavioral, and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice. Psychopharmacology 201, 203–218 (2008). https://doi.org/10.1007/s00213-008-1268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1268-7

Keywords

Navigation