Skip to main content
Log in

Distinctions among GABAA and GABAB responses revealed by calcium channel antagonists, cannabinoids, opioids, and synaptic plasticity in rat hippocampus

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Hippocampal interneurons release γ-aminobutyric acid (GABA) and produce fast GABAA- and slow GABAB-inhibitory postsynaptic potentials (IPSPs). The regulation of GABAB eIPSPs or the interneurons that produce them are not well understood. In addition, while both μ-opioid receptors (μORs) and cannabinoid CB1R receptors (CB1Rs) are present on hippocampal interneurons, it is not clear how these two systems interact.

Objectives

This study tests the hypotheses that: (1) all interneurons can initiate both GABAA and GABAB inhibitory postsynaptic potentials; (2) GABAB responses are insensitive to mGluR-triggered, endocannabinoid (eCB)-mediated inhibitory long-term depression (iLTD); (3) GABAB responses are produced by interneurons that express μOR; and (4) CB1R-dependent and μOR-dependent response interact.

Materials and methods

Pharmacological and electrophysiological approaches were used in acute rat hippocampal slices. High resistance microelectrode recordings were made from pyramidal cells, while interneurons were stimulated extracellularly.

Results

GABAB responses were found to be produced by interneurons that release GABA via either presynaptic N-type or P/Q-type calcium channels but that they are insensitive to suppression by eCBs or eCB-mediated iLTD. GABAB IPSPs were sensitive to suppression by a μOR agonist, suggesting a major source of GABAB responses is the μOR-expressing interneuron population. A small eCB-iLTD (10% eIPSP reduction) persisted in conotoxin. eCB-iLTD was blocked by a μOR agonist in 6/13 slices.

Conclusions

GABAB responses cannot be produced by all interneurons. CB1R or μOR agonists will differentially alter the balance of activity in hippocampal circuits. CB1R- and μOR-mediated responses can interact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alger BE (2002) Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol 68:247–286

    Article  PubMed  CAS  Google Scholar 

  • Andrade R, Malenka RC, Nicoll RA (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Bormann J (1988) Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci 11:112–116

    Article  PubMed  CAS  Google Scholar 

  • Bowery N (1989) GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci 10:401–7

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    Article  PubMed  CAS  Google Scholar 

  • Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38:461–472

    Article  PubMed  CAS  Google Scholar 

  • Drake CT, Milner TA (2002) Mu opioid receptors are in discrete hippocampal interneuron subpopulations. Hippocampus 12:119–136

    Article  PubMed  CAS  Google Scholar 

  • Edwards DA, Kim J, Alger BE (2006) Multiple mechanisms of endocannabinoid response initiation in hippocampus. J Neurophysiol 95:67–75

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  • Freund TF (2003) Interneuron Diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495

    Article  PubMed  CAS  Google Scholar 

  • Gillies MJ, Traub RD, LeBeau FEN, Davies CH, Gloveli T, Buhl EH, Whittington MA (2002) A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J Physiol (Lond) 543:779–793

    Article  CAS  Google Scholar 

  • Glickfeld LL, Scanziani M (2006) Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nature Neurosci 9:807–815

    Article  PubMed  CAS  Google Scholar 

  • Hefft S, Jonas P (2005) Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat Neurosci 8:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AF, Lupica CR (2000) Mechanisms of cannabinoid inhibition of GABA(A) synaptic transmission in the hippocampus. J Neurosci 20:2470–2479

    PubMed  CAS  Google Scholar 

  • Karson MA, Whittington KC, Alger BE (2008) Cholecystokinin inhibits endocannabinoid-sensitive hippocampal IPSPs and stimulates others. Neuropharmacology 54:117–128

    Article  Google Scholar 

  • Katona I, Sperlagh B, Sik A, Kafalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically located CB1R cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J Neurosci 19:4544–4558

    PubMed  CAS  Google Scholar 

  • Lambert NA, Wilson WA (1996) High-threshold Ca2+ currents in rat hippocampal interneurones and their selective inhibition by activation of GABAB receptors. J Physiol (Lond ) 492:115–127

    CAS  Google Scholar 

  • Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Böhme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283(5400):401–404, Jan 15

    Article  PubMed  CAS  Google Scholar 

  • Lenz RA, Wagner JJ, Alger BE (1998) N- and L-type calcium channel involvement in depolarization-induced suppression of inhibition in rat hippocampal CA1 cells. J Physiol (Lond) 512:61–73

    Article  CAS  Google Scholar 

  • Lenz RA, Alger BE (1999) Calcium dependence of depolarization-induced suppression of inhibition in rat hippocampal CA1 pyramidal neurons. J Physiol (Lond) 521:147–157

    Article  CAS  Google Scholar 

  • Maccaferri G, Lacaille JC (2003) Interneuron Diversity series: Hippocampal interneuron classifications—making things as simple as possible, not simpler. Trends Neurosci 26:564–571

    Article  PubMed  CAS  Google Scholar 

  • Maejima T, Hasimoto K, Yoshida T, Aiba A, Kano M (2001) Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31:463–475

    Article  PubMed  CAS  Google Scholar 

  • Maldonado R, Rodriguez de FF (2002) Cannabinoid addiction: behavioral models and neural correlates. J Neurosci 22:3326–3331

    PubMed  CAS  Google Scholar 

  • McQuiston AR, Saggau P (2003) Mu-opioid receptors facilitate the propagation of excitatory activity in rat hippocampal area CA1 by disinhibition of all anatomical layers. J Neurophysiol 90:1936–1948

    Article  PubMed  CAS  Google Scholar 

  • Neu A, Foldy C, Soltesz I (2007) Postsynaptic origin of CB1R-dependent tonic inhibition of GABA release at CCK-positive basket cell to pyramidal cell synapses in the CA1 region of the rat hippocampus. J Physiol (Lond) 578:233–247

    Article  CAS  Google Scholar 

  • Nicoll RA, Alger BE, Jahr CE (1980) Enkephalin blocks inhibitory pathways in the vertebrate CNS. Nature 287(5777):22–25, Sep 4

    Article  PubMed  CAS  Google Scholar 

  • Nicoll RA, Alger BE (1981) A simple chamber for recording from submerged brain slices. J Neurosci Meth 4:153–156

    Article  CAS  Google Scholar 

  • Nicoll RA (2004) My close encounter with GABA(B) receptors. Biochem Pharmacol 68:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Nurse S, Lacaille JC (1997) Do GABAA and GABAB inhibitory postsynaptic responses originate from distinct interneurons in the hippocampus. Can J Physiol Pharmacol 75:520–525

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29:729–738

    Article  PubMed  CAS  Google Scholar 

  • Poncer JC, McKinney RA, Gahwiler BH, Thompson SM (1997) Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18:463–472

    Article  PubMed  CAS  Google Scholar 

  • Poncer JC, McKinney RA, Gahwiler BH, Thompson SM (2000) Differential control of GABA release at synapses from distinct interneurons in rat hippocampus. J Physiol 528(Pt 1):123–130

    Article  PubMed  CAS  Google Scholar 

  • Price CJ, Cauli B, Kovacs ER, Kulik A, Lambolez B, Shigemoto R, Capogna M (2005) Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area. J Neurosci 25:6775–6785

    Article  PubMed  CAS  Google Scholar 

  • Rios C, Gomes I, Devi LA (2007) mu opioid and CB1R cannabinoid receptor interactions: reciprocal inhibition of receptor signaling and neuritogenesis. Br J Pharmacol 148:387–395

    Article  Google Scholar 

  • Ronesi J, Gerdeman GL, Lovinger DM (2004) Disruption of endocannabinoid release and striatal long term depression by blockade of postsynaptic blockade endocannabinoid transport. J Neurosci 24:1673–1679

    Article  PubMed  CAS  Google Scholar 

  • Schoffelmeer AN, Hogenboom F, Wardeh G, De Vries TJ (2006) Interactions between CB1R cannabinoid and mu opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology 51:773–781

    Article  PubMed  CAS  Google Scholar 

  • Solis JM, Nicoll RA (1992) Pharmacological characterization of GABAB-mediated responses in the CA1 region of the rat hippocampal slice. J Neurosci 12:3466–3472

    PubMed  CAS  Google Scholar 

  • Tamas G, Lorincz A, Simon A, Szabadics J (2003) Identified sources and targets of slow inhibition in the neocortex. Science 299:1902–1905

    Article  PubMed  CAS  Google Scholar 

  • Varma N, Carlson GC, Ledent C, Alger BE (2001) Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci 21(1–5):RC188

    PubMed  CAS  Google Scholar 

  • Varma N, Brager D, Morishita W, Lenz RA, London B, Alger B (2002) Presynaptic factors in the regulation of DSI expression in hippocampus. Neuropharmacology 43(4):550–562

    Article  PubMed  CAS  Google Scholar 

  • Vinet J, Sik A (2006) Expression pattern of voltage-dependent calcium channel subunits in hippocampal inhibitory neurons in mice. Neuroscience 143:189–212

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264:107–111

    Article  PubMed  CAS  Google Scholar 

  • Wilson RI, Kunos G, Nicoll RA (2001) Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31:453–462

    Article  PubMed  CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 MH077277 and RO1 DA 014625 to B.E.A. We thank Dr. M. A. Karson for her comments on a draft of this manuscript and for help in preparing the reference list. We also thank K. Gormley at the NIDA for providing the SR141716A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley E. Alger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafourcade, C.A., Alger, B.E. Distinctions among GABAA and GABAB responses revealed by calcium channel antagonists, cannabinoids, opioids, and synaptic plasticity in rat hippocampus. Psychopharmacology 198, 539–549 (2008). https://doi.org/10.1007/s00213-007-1040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-1040-4

Keywords

Navigation