Skip to main content

Advertisement

Log in

5-HT1B receptors, ventral orbitofrontal cortex, and aggressive behavior in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Systemic injections of 5-HT1B receptor agonists have been shown to have specific anti-aggressive effects in aggressive individuals. One site of action for these drugs is the 5-HT1B receptors in the ventral orbitofrontal cortex (VO PFC), an area that has been implicated in the inhibitory control of behavior and is a terminal region for 5-HT projections.

Objective

To assess the anti-aggressive effects of the 5-HT1B receptor agonist CP-94,253 when microinjected into the VO PFC (0.1, 0.56, and 1.0 μg/0.2 μl) or into the infralimbic prefrontal cortex (IL PFC; 1.0 μg/0.2 μl) in separate groups of aggressive resident male mice. To confirm the 5-HT1B receptor as the critical site of action for the anti-aggressive effects, the 5-HT1B/D antagonist GR-127,935 was microinjected at 10.0 μg/0.2 μl into the VO PFC. After recovery from surgery, the anti-aggressive effects of microinjected CP-94,253 were studied during 5-min resident–intruder confrontations that were recorded and analyzed.

Results

Microinjections of CP-94,253 (0.56 and 1.0 μg/0.2 μl) dose-dependently reduced the frequency of attack bites and sideways threats. This effect was behaviorally specific because non-aggressive motor activities were not significantly altered by the drug. In the IL vmPFC or in an area lateral to the VO PFC, CP-94,253 (1.0 μg/0.2 μl) did not have significant behavioral effects.

Conclusions

The results highlight the 5-HT1B receptors in the VO PFC as a particularly important site for the inhibition of species-typical aggressive behavior in male mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Audinot V, Newman-Tancredi A, Millan MJ (2001) Constitutive activity at serotonin 5-HT1D receptors: detection by homologous GTPγS versus [35S]-GTPγS binding isotherms. Neuropharmacology 40:57–64

    Article  PubMed  CAS  Google Scholar 

  • Bannai M, Fish EW, Faccidomo S, Miczek KA (2006) Escalated aggressive behavior and medial prefrontal (infralimbic) cortex 5-HT: reduction by the 5-HT1B receptor agonist CP-94,253 in mice. Neuropsychopharmacology (in press)

  • Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10:295–307

    Article  PubMed  CAS  Google Scholar 

  • Bell R, Donaldson C, Gracey D (1995) Differential effects of CGS 12066B and CP-94,253 on murine social and agonistic behavior. Pharmacol Biochem Behav 52:7–16

    Article  PubMed  CAS  Google Scholar 

  • Blair RJ (2001) Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. J Neurol Neurosurg Psychiatry 71:727–731

    Article  PubMed  CAS  Google Scholar 

  • Bonaventure P, Schotte A, Cras P, Leysen JE (1997) Autoradiographic mapping of 5-HT1B and 5-HT1D receptors in human brain using [3H]alniditan, a new radioligand. Receptors Channels 5:225–230

    PubMed  CAS  Google Scholar 

  • Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58:167–182

    Article  PubMed  CAS  Google Scholar 

  • Boulenguez P, Peters SL, Mitchell SN, Chauveau J, Gray JA, Joseph MH (1998) Dopamine release in the nucleus accumbens and latent inhibition in the rat following microinjections of a 5-HT1B agonist into the dorsal subiculum: implications for schizophrenia. J Psychopharmacol 12:258–267

    Article  CAS  PubMed  Google Scholar 

  • Bouwknecht JA, Hijzen TH, van der GJ, Maes RA, Hen R, Olivier B (2001) Absence of 5-HT1B receptors is associated with impaired impulse control in male 5-HT1B knockout mice. Biol Psychiatry 49:557–568

    Article  PubMed  CAS  Google Scholar 

  • Bruinvels AT, Palacios JM, Hoyer D (1993) Autoradiographic characterization and localization of 5-HT1D compared with 5-HT1B binding sites in rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 347:569–582

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ (2004) Limbic corticostriatal systems and delayed reinforcement. Ann NY Acad Sci 1021:33–50

    Article  PubMed  Google Scholar 

  • Castanon N, Scearce-Levie K, Lucas JJ, Rocha B, Hen R (2000) Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacol Biochem Behav 67:559–566

    Article  PubMed  CAS  Google Scholar 

  • Chiavegatto S, Nelson RJ (2003) Interaction of nitric oxide and serotonin in aggressive behavior. Horm Behav 44:233–241

    Article  PubMed  CAS  Google Scholar 

  • Chopin P, Moret C, Briley M (1994) Neuropharmacology of 5-hydroxytryptamine1B/D receptor ligands. Pharmacol Ther 62:385–405

    Article  PubMed  CAS  Google Scholar 

  • Chudasama Y, Robbins TW (2003) Dissociable contributions of the orbitofrontal and infralimbic cortex to Pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23:8771–8780

    PubMed  CAS  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784

    Article  PubMed  CAS  Google Scholar 

  • Davidson C, Stamford JA (1995) Evidence that 5-hydroxytryptamine release in rat dorsal raphe nucleus is controlled by 5-HT1A, 5HT1B and 5-HT1D autoreceptors. Br J Pharmacol 114:1107–1109

    PubMed  CAS  Google Scholar 

  • de Almeida RMM, Lucion AB (1997) 8-OH-DPAT in the median raphe, dorsal periaqueductal gray and corticomedial amygdala nucleus decreases, but the medial septal area it can increase maternal aggressive behavior in rats. Psychopharmacology 134:392–400

    Article  PubMed  Google Scholar 

  • de Almeida RMM, Miczek KA (2002) Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline—a 5-HT1B receptor agonist. Neuropsychopharmacology 27:171–181

    Article  PubMed  Google Scholar 

  • de Almeida RMM, Faccidomo S, Fish E, Miczek KA (2001a) Inhibition of alcohol-heightened aggression by action at post-synaptic 5-HT1B receptors in male mice. Aggress Behav 3:234–235

    Google Scholar 

  • de Almeida RMM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA (2001b) Zolmitriptan—a 5-HT1B/D agonist, alcohol, and aggression in mice. Psychopharmacology 157:131–141

    Article  PubMed  Google Scholar 

  • de Almeida RMM, Ferrari PF, Parmigiani S, Miczek KA (2005) Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526:51–64

    Article  PubMed  CAS  Google Scholar 

  • de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139

    Article  PubMed  CAS  Google Scholar 

  • Engel G, Gothert M, Hoyer D, Schlicker E, Hillenbrand K (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol 322:1–7

    Article  Google Scholar 

  • Faccidomo S, Miczek KA (2004) Cortical modulation of alcohol-heightened aggression in mice: effect of the 5-HT1B agonist, CP-94,253. Online Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC

    Google Scholar 

  • Faccidomo S, Bannai M, van Trigt RL, DeBold JF, Miczek KA (2005) Alcohol-heightened aggression and corticolimbic 5-HT in mice: infusion and reverse microdialysis of 5-HT1B agonists into the infralimbic and orbitofrontal cortex. Online Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC

    Google Scholar 

  • Ferrari PF, Palanza P, Parmigiani S, de Almeida RMM, Miczek KA (2005) Serotonin and aggressive behavior in rodents and nonhuman primates: predispositions and plasticity. Eur J Pharmacol 526:259–273

    Article  PubMed  CAS  Google Scholar 

  • Ferris CF, Delville Y (1994) Vasopressin and serotonin interactions in the control of agonistic behavior. Psychoneuroendocrinology 19:593–601

    Article  PubMed  CAS  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT1B receptor agonist CP-94,253. Psychopharmacology 146:391–399

    Article  PubMed  CAS  Google Scholar 

  • Fish EW, Sekinda M, Ferrari PF, Dirks A, Miczek, KA (2000) Distress vocalizations in maternally-separated mouse pups: modulation via 5-HT1A, 5-HT1B and GABAA receptors. Psychopharmacology 149:277–285

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Korth KM (1999) RU-24969 disrupts d-amphetamine self-administration and responding for conditioned reward via stimulation of 5-HT1B receptors. Behav Pharmacol 10:183–193

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Azampanah A, Korth KM (2002) Activation of 5-HT1B receptors in the nucleus accumbens reduces self-administration of amphetamine on a progressive ratio schedule. Pharmacol Biochem Behav 71:717–725

    Article  PubMed  CAS  Google Scholar 

  • Higley JD, Mehlman PT, Poland RE, Taub DM, Vickers J, Suomi SJ, Linnoila M (1996) CSF testosterone and 5-HIAA correlate with different types of aggressive behaviors. Biol Psychiatry 40:1067–1082

    Article  PubMed  CAS  Google Scholar 

  • Hjörth S, Sharp T (1991) Effect of the 5-HT1A receptor agonist 8-OH-DPAT on the release of 5-HT in dorsal and median raphe-innervated rat brain regions as measured by in vivo microdialysis. Life Sci 48:1779–1786

    Article  PubMed  Google Scholar 

  • Hoyer D, Middlemiss DN (1989) Species-differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci 10:130–132

    Article  PubMed  CAS  Google Scholar 

  • Humphrey PP, Feniuk W, Marriott AS, Tanner RJ, Jackson MR, Tucker ML (1991) Preclinical studies on the anti-migraine drug, sumatriptan. Eur Neurol 31:282–290

    Article  PubMed  CAS  Google Scholar 

  • Kheramin S, Body S, Herrera FM, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2005) The effect of orbital prefrontal cortex lesions on performance on a progressive ratio schedule: implications for models of inter-temporal choice. Behav Brain Res 156:145–152

    Article  PubMed  CAS  Google Scholar 

  • Knobelman DA, Kung HF, Lucki I (2000) Regulation of extracellular concentrations of 5-hydroxytryptamine (5-HT) in mouse striatum by 5-HT1A and 5-HT1B receptors. J Pharmacol Exp Ther 292:1111–1117

    PubMed  CAS  Google Scholar 

  • Koe BK, Lebel LA (1995) Effects of serotoninergic agents on downregulation of beta-adrenoceptors by the selective serotonin reuptake inhibitor sertraline. Arch Int Pharmacodyn Ther 329:231–244

    PubMed  CAS  Google Scholar 

  • Koe BK, Nielsen JA, Macor JE, Heym J (1992) Biochemical and behavioral studies of the 5-HT1B receptor agonist, CP-94,253. Drug Dev Res 26:241–250

    Article  CAS  Google Scholar 

  • Kolb B, Robbins T (2003) The rodent prefrontal cortex. Behav Brain Res 146:1–2

    Article  PubMed  Google Scholar 

  • Lee MD, Simansky KJ (1997) CP-94,253: A selective serotonin (1B) (5-HT1B) agonist that promotes satiety. Psychopharmacology 131:264–270

    Article  CAS  PubMed  Google Scholar 

  • Lucas JJ, Seguin L, Hen R (1997) 5-hydroxytryptamine1B receptors modulate the effect of cocaine on c-fos expression: converging evidence using 5-hydroxytryptamine1B knockout mice and the 5-hydroxytryptamine1B/1D antagonist GR127935. Mol Pharmacol 51:755–763

    PubMed  CAS  Google Scholar 

  • Martin GR, Humphrey PPA (1994) Classification review: receptors for 5-hydroxytryptamine: current perspectives on classification and nomenclature. Neuropharmacology 33:261–273

    Article  PubMed  CAS  Google Scholar 

  • Matzen L, van Amsterdam C, Rautenberg W, Greiner HE, Harting J, Seyfried CA, Bottcher H (2000) 5-HT reuptake inhibitors with 5-HT1B/1D antagonistic activity: a new approach toward efficient antidepressants. J Med Chem 43:1149–1157

    Article  PubMed  CAS  Google Scholar 

  • Maurel S, Schreiber R, De Vry J (1998) Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in the generalization of 5-HT receptor agonists to the ethanol cue in the rat. Behav Pharmacol 9:337–343

    Article  PubMed  CAS  Google Scholar 

  • Maurel S, De Vry J, Schreiber R (1999) 5-HT receptor ligands differentially affect operant oral self-administration of ethanol in the rat. Eur J Pharmacol 370:217–223

    Article  PubMed  CAS  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  • Mehlman PT, Higley JD, Faucher I, Lilly AA, Taub DM, Vickers J, Suomi SJ, Linnoila M (1994) Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. Am J Psychiatry 151:1485–1491

    PubMed  CAS  Google Scholar 

  • Miczek KA, O’Donnell JM (1978) Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and l-dopa. Psychopharmacology 57:47–55

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, de Almeida RMM (2001) Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacology 57:421–429

    Article  Google Scholar 

  • Miczek KA, Hussain S, Faccidomo S (1998) Alcohol-heightened aggression in mice: Attenuation by 5-HT1A receptor agonists. Psychopharmacology 139:160–168

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Fish EW, DeBold JF, de Almeida RMM (2002) Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γ-aminobutyric acid systems. Psychopharmacology 163:434–458

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Newman-Tancredi A, Lochon S, Touzard M, Aubry S, Audinot V (2002) Specific labelling of serotonin 5-HT1B receptors in rat frontal cortex with the novel, phenylpiperazine derivative, [3H]GR125,743—a pharmacological characterization. Pharmacol Biochem Behav 71:589–598

    Article  PubMed  CAS  Google Scholar 

  • Moret C, Briley M (2000) The possible role of 5-HT1B/D receptors in psychiatric disorders and their potential as a target for therapy. Eur J Pharmacol 404:1–12

    Article  PubMed  CAS  Google Scholar 

  • Morgan MA, LeDoux JE (1995) Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 109:681–688

    Article  PubMed  CAS  Google Scholar 

  • Morgan MA, Schulkin J, LeDoux JE (2003) Ventral medial prefrontal cortex and emotional perseveration: the memory for prior extinction training. Behav Brain Res 146:121–130

    Article  PubMed  Google Scholar 

  • Mos J, Olivier B, Poth M, Aken H (1992) The effects of intraventricular administration of eltoprazine, 1-(3-trifluoromethylphenyl) piperazine hydrochloride and 8-OH-DPAT on resident intruder aggression in the rat. Eur J Pharmacol 212:295–298

    Article  PubMed  CAS  Google Scholar 

  • Mos J, Olivier B, Poth M, Van Oorschot R, Van Aken H (1993) The effects of dorsal raphe administration of eltoprazine, TFMPP and 8-OH-DPAT on resident intruder aggression in the rat. Eur J Pharmacol 238:411–415

    Article  PubMed  CAS  Google Scholar 

  • Olivier B, van Oorschot R (2005) 5-HT1B receptors and aggression: a review. Eur J Pharmacol 526:207–217

    Article  PubMed  CAS  Google Scholar 

  • Olivier B, Mos J, Tulp M, Schipper J (1989a) Modulatory action of serotonin in aggressive behaviour. In: Archer T (ed) Behavioral pharmacology of 5-HT. Lawrence Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Olivier B, Mos J, Van der Heyden J, Hartog J (1989b) Serotonergic modulation of social interactions in isolated male mice. Psychopharmacology 97:154–156

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MF, Fernández AG, Palacios JM (1997) Activation of central 5HT1B receptors increases locomotor activity in mice. Hum Psychopharmacol 12:431–435

    Article  CAS  Google Scholar 

  • Parsons LH, Weiss F, Koob GF (1996) Serotonin-1B receptor stimulation enhances domanime-mediated reinforcement. Psychopharmacology 128:150–160

    Article  PubMed  CAS  Google Scholar 

  • Parsons LH, Weiss F, Koob GF (1998) Serotonin-1B receptor stimulation enhances cocaine reinforcement. J Neurosci 18:10078–10089

    PubMed  CAS  Google Scholar 

  • Parsons LH, Koob GF, Weiss F (1999) RU 24969, 5-HT1B/1A receptor agonist, potentiates cocaine-induced increases in nucleus accumbens dopamine. Synapse 32:132–135

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Rempel NL, Callaway CW, Geyer MA (1993) Serotonin-1B receptor activation mimics behavioral effects of presynaptic serotonin release. Neuropsychopharmacology 8:201–211

    PubMed  CAS  Google Scholar 

  • Roberts C, Price GW, Jones BJ (1997) The role of 5-HT1B/1D receptors in the modulation of 5-hydroxytryptamine levels in the frontal cortex of the conscious guinea pig. Eur J Pharmacol 326:23–30

    Article  PubMed  CAS  Google Scholar 

  • Rollema H, Clarke T, Sprouse JS, Schulz DW (1996) Combined administration of a 5-hydroxytryptamine (5-HT) 1D antagonist and a 5-HT reuptake inhibitor synergistically increases 5-HT release in guinea pig hypothalamus in vivo. J Neurochem 67:2204–2207

    Article  PubMed  CAS  Google Scholar 

  • Sanchez C, Arnt J, Hyttel J, Moltzen EK (1993) The role of serotonergic mechanisms in inhibition of isolation-induced aggression in male mice. Psychopharmacology 110:53–59

    Article  PubMed  CAS  Google Scholar 

  • Sari Y (2004) Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28:565–582

    Article  PubMed  CAS  Google Scholar 

  • Sari Y, Miguel M-C, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Vergé D (1999) Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88:899–915

    Article  CAS  PubMed  Google Scholar 

  • Saudou F, Amara DA, Dierich A, Lemeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265:1875–1878

    Article  PubMed  CAS  Google Scholar 

  • Scearce-Levie K, Viswanathan SS, Hen R (1999) Locomotor response to MDMA is attenuated in knockout mice lacking the 5-HT1B receptor. Psychopharmacology 141:154–161

    Article  PubMed  CAS  Google Scholar 

  • Schipper J, Tulp MT, Sijbesma H (1990) Neurochemical profile of eltoprazine. Drug Metabol Drug Interact 8:85–114

    PubMed  CAS  Google Scholar 

  • Schlicker E, Fink K, Molderings GJ, Price GW, Duckworth M, Gaster L, Middlemiss DN, Zentner J, Likungu J, Gothert M (1997) Effects of selective h5-HT1B (SB-216641) and h5-HT1D (BRL-15572) receptor ligands on guinea-pig and human 5-HT auto- and heteroreceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 356:321–327

    Article  PubMed  CAS  Google Scholar 

  • Seguin JR (2004) Neurocognitive elements of antisocial behavior: relevance of an orbitofrontal cortex account. Brain Cogn 55:185–197

    Article  PubMed  Google Scholar 

  • Sijbesma H, Schipper J, de Kloet ER, Mos J, van Aken H, Olivier B (1991) Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Beh 38:447–458

    Google Scholar 

  • Skingle M, Beattie DT, Scopes DI, Starkey SJ, Connor HE, Feniuk W, Tyers MB (1996) GR127935: a potent and selective 5-HT1D receptor antagonist. Behav Brain Res 73:157–161

    Article  PubMed  CAS  Google Scholar 

  • Spinella M (2004) Neurobehavioral correlates of impulsivity: evidence of prefrontal involvement. Int J Neurosci 114:95–104

    Article  PubMed  Google Scholar 

  • Tomkins DM, O’Neill MF (2000) Effect of 5-HT1B receptor ligands on self-administration of ethanol in an operant procedure in rats. Pharmacol Biochem Behav 66:129–136

    Article  PubMed  CAS  Google Scholar 

  • Van Erp AMM, Miczek KA (2000) Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci 20:9320–9325

    PubMed  Google Scholar 

  • Wall PM, Messier C (2000) Concurrent modulation of anxiety and memory. Behav Brain Res 109:229–241

    Article  PubMed  CAS  Google Scholar 

  • Wall PM, Messier C (2002) Infralimbic kappa opioid and muscarinic M1 receptor interactions in the concurrent modulation of anxiety and memory. Psychopharmacology 160:233–244

    Article  PubMed  CAS  Google Scholar 

  • Wall PM, Blanchard RJ, Yang M, Blanchard DC (2003) Infralimbic D2 receptor influences on anxiety-like behavior and active memory/attention in CD-1 mice. Prog Neuropsychopharmacol Biol Psychiatry 27:395–410

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. J. Thomas Sopko and Mr. Dirson João Stein for their outstanding technical support. This research was supported in part by UNISINOS, Universidade do Vale do Rio dos Sinos, RS, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Miczek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Almeida, R.M.M., Rosa, M.M., Santos, D.M. et al. 5-HT1B receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology 185, 441–450 (2006). https://doi.org/10.1007/s00213-006-0333-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0333-3

Keywords

Navigation