Skip to main content
Log in

A high frequency boundary element method for scattering by a class of nonconvex obstacles

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper we propose and analyse a hybrid numerical-asymptotic boundary element method for the solution of problems of high frequency acoustic scattering by a class of sound-soft nonconvex polygons. The approximation space is enriched with carefully chosen oscillatory basis functions; these are selected via a study of the high frequency asymptotic behaviour of the solution. We demonstrate via a rigorous error analysis, supported by numerical examples, that to achieve any desired accuracy it is sufficient for the number of degrees of freedom to grow only in proportion to the logarithm of the frequency as the frequency increases, in contrast to the at least linear growth required by conventional methods. This appears to be the first such numerical analysis result for any problem of scattering by a nonconvex obstacle. Our analysis is based on new frequency-explicit bounds on the normal derivative of the solution on the boundary and on its analytic continuation into the complex plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hewett, D.P., Langdon, S., Melenk, J.M.: A high frequency \(hp\) boundary element method for scattering by convex polygons. SIAM J. Numer. Anal. 51, 629–653 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babic̆ V.M., Buldyrev, V.S.: Short-Wavelength Diffraction Theory. Springer, Berlin (1991)

  4. Borovikov, V.A., Kinber, B.Y.: Geometrical Theory of Diffraction, IEE Electromagnetic Waves Series, vol. 37. Institution of Electrical Engineers (IEE), London (1994)

  5. Bouche, D., Molinet, F., Mittra, R.: Asymptotic Methods in Electromagnetics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  6. Keller, J.B.: Geometrical theory of diffraction. J. Opt. Soc. Am. A 52, 116–130 (1962)

    Article  Google Scholar 

  7. Kouyoumjian, R.G., Pathak, P.H.: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. P. IEEE 62(11), 1448–1461 (1974)

    Article  Google Scholar 

  8. Rawlins, A.D.: High-frequency diffraction of a electromagnetic plane wave by an imperfectly conducting rectangular cylinder. J. Eng. Math. 76, 157–180 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chandler-Wilde, S.N., Langdon, S.: A Galerkin boundary element method for high frequency scattering by convex polygons. SIAM J. Numer. Anal. 45(2), 610–640 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chandler-Wilde, S.N., Langdon, S., Mokgolele, M.: A high frequency boundary element method for scattering by convex polygons with impedance boundary conditions. Commun. Comput. Phys. 11, 573–593 (2012)

    MathSciNet  Google Scholar 

  11. Betcke, T., Spence, E.A.: Numerical estimation of coercivity constants for boundary integral operators in acoustic scattering. SIAM J. Numer. Anal. 49(4), 1572–1601 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Lindner, M.: Condition number estimates for combined potential boundary integral operators in acoustic scattering. J. Integral Equ. Appl. 21(2), 229–279 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bruno, O.P.: Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics. In: Topics in Computational Wave Propagation, Lect. Notes Comput. Sci. Eng., vol. 31, pp. 43–82. Springer (2003)

  14. Bruno, O.P., Reitich, F.: High order methods for high-frequency scattering applications. In: H. Ammari (ed.) Modeling and Computations in Electromagnetics, Lect. Notes Comput. Sci. Eng., vol. 59, pp. 129–164. Springer (2007)

  15. Chandler-Wilde, S.N., Hewett, D.P., Langdon, S., Twigger, A.: A high frequency BEM for scattering by non-convex obstacles. In: Proceedings of 10th Int. Conf. on Mathematical and Numerical Aspects of Waves, Vancouver, Canada, pp. 307–310 (2011)

  16. Anand, A., Boubendir, Y., Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. II: the three-dimensional scalar case. Numer. Math. 114(3), 373–427 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ecevit, F.: Integral equation formulations of electromagnetic and acoustic scattering problems: convergence of multiple scattering interations and high-frequency asymptotic expansions. Ph.D. thesis, University of Minnesota (2005)

  18. Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. Part I: the two-dimensional case. Numer. Math. 114, 271–354 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Geuzaine, C., Bruno, O., Reitich, F.: On the O(1) solution of multiple-scattering problems. IEEE Trans. Magn. 41, 1488–1491 (2005)

    Article  Google Scholar 

  20. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  21. Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)

    MATH  Google Scholar 

  22. Betcke, T., Chandler-Wilde, S.N., Graham, I.G., Langdon, S., Lindner, M.: Condition number estimates for combined potential boundary integral operators in acoustics and their boundary element discretisation. Numer. Methods PDEs 27(1), 31–69 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kress, R.: Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering. Quart. J. Mech. Appl. Math. 38(2), 323 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Spence, E.A., Chandler-Wilde, S.N., Graham, I.G., Smyshlyaev, V.P.: A new frequency-uniform coercive boundary integral equation for acoustic scattering. Comm. Pure Appl. Math. 64(10), 1384–1415 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chandler-Wilde, S.N., Monk, P.: Wave-number-explicit bounds in time-harmonic scattering. SIAM J. Math. Anal. 39(5), 1428–1455 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106(3), 471–510 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Spence, E.A., Kamotski, I.V., Smyshlyaev, V.P.: Coercivity of combined boundary integral equations in high-frequency scattering. Comm. Pure Appl. Math. (2014). http://people.bath.ac.uk/eas25/SpKaSm13.pdf

  28. Oberhettinger, F.: On asymptotic series for functions occuring in the theory of diffraction of waves by wedges. J. Math. Phys. 34, 245–255 (1956)

    MATH  MathSciNet  Google Scholar 

  29. Bowman, J.J., Senior, T.B.A., Uslenghi, P.L.E.: Electromagnetic and acoustic scattering by simple shapes. Hemisphere Publishing Corp, New York (1987)

    Google Scholar 

  30. Digital Library of Mathematical Functions. National Institute of Standards and Technology. http://dlmf.nist.gov/. Released 7 May 2010

  31. Titchmarsh, E.C.: Theory of Functions, 2nd edn. OUP, London (1939)

    MATH  Google Scholar 

  32. Chandler-Wilde, S.N.: Boundary value problems for the Helmholtz equation in a half-plane. In: Proceedings of Third Int. Conf. on Mathematical and Numerical Aspects of Wave Propagation, pp. 188–197. SIAM (1995)

  33. Schwab, C.: \(p-\) and \(hp-\) Finite Element Methods. Clarendon Press, Oxford (1998)

    Google Scholar 

  34. Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)

    Book  MATH  Google Scholar 

  35. Twigger, A.: Boundary element methods for high frequency scattering. Ph.D. thesis, University of Reading (2013)

  36. Alazah, M., Chandler-Wilde, S.N., La Porte, S.: Computing Fresnel integrals via modified trapezium rules. Numer. Math. (2014). doi:10.1007/s00211-014-0627-z

  37. Groth, S.P., Hewett, D.P., Langdon, S.: Hybrid numerical-asymptotic approximation for high frequency scattering by penetrable convex polygons. IMA J. Appl. Math. (2014). doi:10.1093/imamat/hxt040

Download references

Acknowledgments

The authors thank the editor and the anonymous reviewers for their helpful comments, and acknowledge funding support from EPSRC (EP/F067798/1 to S.N.C-W., D.P.H. and S.L., and DTG studentship to A.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Hewett.

Additional information

Supported by EPSRC grant EP/F067798/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandler-Wilde, S.N., Hewett, D.P., Langdon, S. et al. A high frequency boundary element method for scattering by a class of nonconvex obstacles. Numer. Math. 129, 647–689 (2015). https://doi.org/10.1007/s00211-014-0648-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0648-7

Mathematics Subject Classification

Navigation