Skip to main content
Log in

A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we analyze a residual-type a posteriori error estimator of the finite volume element method for a quasi-linear elliptic problem of nonmonotone type and derive computable upper and lower bounds on the error in the H 1-norm. Numerical experiments are provided to illustrate the performance of the proposed estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M., Oden J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, Chichester (2000)

    MATH  Google Scholar 

  2. Arnold D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuska I., Strouboulis T.: The Finite Element Method and its Reliability. Clarendon Press, Oxford (2001)

    Google Scholar 

  4. Bangerth W., Rannacher R.: Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics, ETH-Zürich. Birkhäuser, Basel (2003)

    Google Scholar 

  5. Bank R.E., Rose D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bergam A., Mghazli Z., Verfürth R.: Estimations a posteriori d’un schéma de volumes finis pour un problème non linéaire. Numer. Math. 95, 599–624 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bi C.: Superconvergence of finite volume element method for a nonlinear elliptic problem. Numer. Methods PDEs 23, 220–233 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Bi C., Ginting V.: Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 108, 177–198 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brenner S., Scott R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)

    MATH  Google Scholar 

  10. Cai Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carstensen C., Lazarov R., Tomov S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42, 2496–2521 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chatzipantelidis P.: Finite volume methods for elliptic PDE’s: a new approach. Math. Model. Numer. Anal. 36, 307–324 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chatzipantelidis P., Ginting V., Lazarov R.: A finite volume element method for a nonlinear elliptic problem. Numer. Linear Algebra Appl. 12, 515–546 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chou S.H., Li Q.: Error estimates in L 2, H 1 and L in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comput. 69, 103–120 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Chou S.H., Kwak D.Y.: Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math. 90, 459–486 (2002)

    Article  MathSciNet  Google Scholar 

  16. Ciarlet P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  17. Douglas J. Jr, Dupont T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comput. 29, 689–696 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ewing R.E., Lin T., Lin Y.P.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39, 1865–1888 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gudi T., Pani A.K.: Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45, 163–192 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hlaváček I., Křížek M.: On a nonpotential and nonmonotone second order elliptic problem with mixed boundary conditions. Stability Appl. Anal. Contin. Media 3, 85–97 (1993)

    Google Scholar 

  21. Hlavek I., Křížek M., Malý J.: On Galerkin approximations of a quasi-linear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184, 168–189 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huang J., Xi S.: On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35, 1762–1774 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lazarov R., Tomov S.: A posteriori error estimates for finite volume approximations of convection-diffusion-reaction equations. Comput. Geosci. 6, 483–503 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lazarov R., Tomov S.: Adaptive finite volume element method for convection-diffusion-reaction problems in 3d. In: Minev, Y.W.P., Lin, Y. (eds) Scientific Computing and Application., pp. 91–106. Nova Science Publishing House, Huntington (2001)

    Google Scholar 

  25. Li R., Chen Z., Wei W.: Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000)

    MATH  Google Scholar 

  26. Lin Q., Zhu Q.: The Preprocessing and Postprocessing for the Finite Element Methods. Shanghai Scientific and Technical Publishers, Shanghai (1994)

    Google Scholar 

  27. Liu L., Křížek M., Neittaanmäki P.: Higher order finite element approximation of a quasilinear elliptic boundary value problem of a nonmonotone type. Appl. Math. 41, 467–478 (1996)

    MATH  MathSciNet  Google Scholar 

  28. Liu L., Liu T., Křížek M., Lin T., Zhang S.H.: Global superconvergence and a posteriori error estimators of the finite element method for a quasi-linear elliptic boundary value problem of nonmonotone type. SIAM J. Numer. Anal. 42, 1729–1744 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Milner F.A.: Mixed finite element methods for quasilinear second-order elliptic problems. Math. Comput. 44, 1–22 (1985)

    Article  MathSciNet  Google Scholar 

  30. Mishev I.D.: Finite volume element methods for non-definite problems. Numer. Math. 83, 161–175 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Neittaanmäki P., Repin S.: Reliable methods for mathematical modelling. Error control and a posteriori estimates. Elsevier, New York (2004)

    Google Scholar 

  32. Rannacher R., Scott R.: Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 15, 1–22 (1982)

    MathSciNet  Google Scholar 

  33. Schatz A.H., Thomée V., Wahlbin L.B.: Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33, 265–304 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  34. Scott L.R., Zhang S.: Finite element interpolation of nonsmooth functions satisfying boundary condition. Math. Comput. 54, 483–493 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  35. Verfrth R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996)

    Google Scholar 

  36. Wu H., Li R.: Error estimates for finite volume element methods for general second order elliptic problem. Numer. Methods PDEs 19, 693–708 (2003)

    MATH  Google Scholar 

  37. Xu J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33, 1759–1777 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  38. Xu, J., Zhu, Y., Zou, Q.: New adaptive finite volume methods and convergence analysis. Numer. Math. (submitted). Available online at http://www.math.psu.edu/xu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Ginting.

Additional information

The work of C. Bi is supported by the National Natural Science Foundation of China (Grant No: 10601045).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, C., Ginting, V. A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem. Numer. Math. 114, 107–132 (2009). https://doi.org/10.1007/s00211-009-0247-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-009-0247-1

Mathematics Subject Classification (2000)

Navigation