Skip to main content
Log in

Interior penalty method for the indefinite time-harmonic Maxwell equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

In this paper, we introduce and analyze the interior penalty discontinuous Galerkin method for the numerical discretization of the indefinite time-harmonic Maxwell equations in the high-frequency regime. Based on suitable duality arguments, we derive a-priori error bounds in the energy norm and the L2-norm. In particular, the error in the energy norm is shown to converge with the optimal order (hmin{s,ℓ}) with respect to the mesh size h, the polynomial degree ℓ, and the regularity exponent s of the analytical solution. Under additional regularity assumptions, the L2-error is shown to converge with the optimal order (hℓ+1). The theoretical results are confirmed in a series of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainsworth, M., Coyle, J.: Hierarchic hp-edge element families for Maxwell’s equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Eng. 190, 6709–6733 (2001)

    Article  Google Scholar 

  2. Alonso, A., Valli, A.: An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Math. Comp. 68, 607–631 (1999)

    Article  Google Scholar 

  3. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Models Appl. Sci. 21, 823–864 (1998)

    Google Scholar 

  4. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)

    Google Scholar 

  5. Boffi, D., Gastaldi, L.: Edge finite elements for the approximation of Maxwell resolvent operator. Modél. Math. Anal. Numér. 36, 293–305 (2002)

    Article  Google Scholar 

  6. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math. 36, 1–25 (1980)

    Google Scholar 

  7. Buffa, A.: Remarks on the discretization of some non-positive operators with application to Heterogeneous Maxwell Problems. SIAM J. Number. Anal., to appear.

  8. Buffa, A., Hiptmair, R., von Petersdorff, T., Schwab, C.: Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95, 459–485 (2003)

    Article  Google Scholar 

  9. Demkowicz, L., Vardapetyan, L.: Modeling of electromagnetic absorption/scattering problems using hp–adaptive finite elements. Comput. Methods Appl. Mech. Eng. 152, 103–124 (1998)

    Article  Google Scholar 

  10. Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7, 957–991 (1997)

    Article  Google Scholar 

  11. Hesthaven, J.S., Warburton, T.: High order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Royal Soc. London Ser A, 493–524, 2004

  12. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica. 2003, pp. 237–339

  13. Houston, P., Perugia, I., Schötzau, D.: Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator. Comput. Methods Appl. Mech. Eng., 194(2–5):499–510, 2005.

    Google Scholar 

  14. Houston, P., Perugia, I., Schötzau, D.: hp-DGFEM for Maxwell’s equations. In: F. Brezzi, A. Buffa, S. Corsaro, A. Murli (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2001, Springer-Verlag, 2003, pp. 785–794

  15. Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comp., 22(1):325–356, 2005.

    Google Scholar 

  16. Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42, 434–459 (2004)

    Article  Google Scholar 

  17. Karakashian, O.A., Pascal, F.: A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  Google Scholar 

  18. Monk, P.: A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63, 243–261 (1992)

    Article  Google Scholar 

  19. Monk, P.: Finite element methods for Maxwell’s equations. Oxford University Press, New York, 2003

  20. Monk, P.: A simple proof of convergence for an edge element discretization of Maxwell’s equations. In: C. Carstensen, S. Funken, W. Hackbusch, R. Hoppe, P. Monk, (eds.), Computational electromagnetics, volume 28 of Lect. Notes Comput. Sci. Eng. Springer–Verlag, 2003, pp. 127–141

  21. Nédélec, J.C.: A new family of mixed finite elements in ℝ3 . Numer. Math. 50, 57–81 (1986)

    Article  Google Scholar 

  22. Perugia, I., Schötzau, D.: The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comp. 72, 1179–1214 (2003)

    Article  Google Scholar 

  23. Perugia, I., Schötzau, D., Monk, P.: Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Eng. 191, 4675–4697 (2002)

    Article  Google Scholar 

  24. Schatz, A.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28, 959–962 (1974)

    Google Scholar 

  25. Vardapetyan, L., Demkowicz, L.: hp-adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Eng. 169, 331–344 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Houston.

Additional information

Supported by the EPSRC (Grant GR/R76615).

Supported by the Swiss National Science Foundation under project 21-068126.02.

Supported in part by the Natural Sciences and Engineering Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houston, P., Perugia, I., Schneebeli, A. et al. Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100, 485–518 (2005). https://doi.org/10.1007/s00211-005-0604-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0604-7

Mathematics Subject Classification (2000)

Navigation