Skip to main content

Advertisement

Log in

The effects of systemically administered taurine and N-pivaloyltaurine on striatal extracellular dopamine and taurine in freely moving rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The second most abundant cerebral amino acid, taurine, is widely consumed in the so-called "energy drinks". Therefore, its possible actions on the brain are of great interest. In the present experiments taurine was given intraperitoneally to rats in order to study if it can be administered systemically in large enough amounts to alter cerebral dopaminergic transmission or to induce hypothermia. In addition, the effects of subcutaneously administered lipophilic taurine analogue, N-pivaloyltaurine, were studied. The extracellular striatal taurine and dopamine concentrations were estimated using in vivo microdialysis in awake and freely moving rats, and the rectal temperatures were measured. Taurine at the total dose of 45 mmol/kg i.p. led to a maximally 8-fold increased striatal extracellular taurine concentration, induced a long-lasting hypothermia, and significantly reduced the striatal extracellular dopamine concentration. The latter effect was strengthened by co-treatment with reuptake inhibitor nomifensine. N-pivaloyltaurine (15 mmol/kg in total, s.c.) only slightly elevated the striatal extracellular taurine concentration, failed to alter the rectal temperature, and in contrast to taurine somewhat elevated the striatal extracellular dopamine concentration suggesting a different mechanism or locus of action from that of taurine. Finally, our experiments using brain microdialysis confirmed the earlier findings that taurine is slowly eliminated from the brain. The results clearly indicate that systemically given taurine enters the brain in concentrations that induce pharmacological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Ahtee L, Vahala M-L (1985) Taurine and its derivatives alter brain dopamine metabolism similarly to GABA in mice and rats. In: Oja SS, Ahtee L, Kontro P, Paasonen MK (eds) Taurine: biological actions and clinical perspectives. Liss, New York, pp 331–341

  • Ahtee L, Auvinen H, Mäenpää A-R, Vahala M-L, Lehtinen M, Halmekoski J (1985) Comparison of central nervous system actions of taurine and N-pivaloyltaurine. Acta Pharmacol Toxicol 57:96–105

    CAS  Google Scholar 

  • Aldegunde M, Miguez I, Martin I, Fernandez Otero MP (1983) Changes in brain monoamine metabolism associated with hypothermia induced by intraperitoneally administered taurine in the rat. IRCS Med Sci 11:258–259

    CAS  Google Scholar 

  • Alford C, Cox H, Wescott R (2001) The effects of Red Bull Energy Drink on human performance and mood. Amino Acids 21:139–150

    Article  CAS  PubMed  Google Scholar 

  • Anderson JJ, DiMicco JA (1992) The use of microdialysis for studying the regional effects of pharmacological manipulation on extracellular levels of amino acids—some methodological aspects. Life Sci 51:623–630

    Article  CAS  PubMed  Google Scholar 

  • Beal MF, Kowall NW, Swartz KJ, Ferrante RJ, Martin JB (1988) Systemic approaches to modifying quinolinic acid striatal lesions in rats. J Neurosci 8:3901–3908

    CAS  PubMed  Google Scholar 

  • Bianchi L, Bolam JP, Galeffi F, Frosini M, Palmi M, Sgaragli G, Della Corte L (1996) In vivo release of taurine from rat neostriatum and substantia nigra. In: Huxtable RJ, Azuma J, Kuriyama K, Nakagawa M, Baba A (eds) Taurine 2: basic and clinical aspects. Plenum, New York, pp 427–433

  • Böckelmann R, Reiser M, Wolf G (1998) Potassium-stimulated taurine release and nitric oxide synthase activity during quinolinic acid lesion of the rat striatum. Neurochem Res 23:469–475

    Article  PubMed  Google Scholar 

  • Bureau MH, Olsen WO (1991) Taurine acts on a subclass of GABAA receptors in mammalian brain in vitro. Eur J Pharmacol 27:9–16

    Google Scholar 

  • Butcher SP, Liptrot J, Arbuthnott GW (1991) Characterisation of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neurosci Lett 122:245–248

    Article  CAS  PubMed  Google Scholar 

  • Collins GGS (1974) The rates of synthesis, uptake and disappearance of [14C]-taurine in eight areas of the rat central nervous system. Brain Res 76:447–459

    Article  CAS  PubMed  Google Scholar 

  • Dykstra KH, Hsiao JK, Morrison PF, Bungay PM, Mefford IN, Scully MM, Dedrick RL (1992) Quantitative examination of tissue concentration profiles associated with microdialysis. J Neurochem 58:931–940

    CAS  PubMed  Google Scholar 

  • Eppler B, Patterson TA, Zhou W, Millard WJ, Dawson R Jr (1999) Kainic acid (KA)-induced seizures in Sprague-Dawley rats and the effect of dietary taurine (TAU) supplementation or deficiency. Amino Acids 16:133–147

    CAS  PubMed  Google Scholar 

  • Ganong WF (1995) In: Review of medical physiology. Appleton and Lange, New York, pp 560

  • Garcia de Yebenes Prous J, Carlsson A, Mena Gomez MA (1978) The effect of taurine on motor behaviour, body temperature and monoamine metabolism in rat brain. Naunyn-Schmiedebergs Arch Pharmacol 304:95–99

  • Glyn JR, Lipton JM (1981) Effects of central administration of alanine on body temperature of the rabbit: comparisons with the effects of serine, glycine and taurine. Brain Res Bull 6:467–472

    CAS  PubMed  Google Scholar 

  • Greubel S (1998) Isotonische Getränke, "energy"- und "power"-drinks. Med Monatschr Pharm 21:353–355

    CAS  Google Scholar 

  • Haas HL, Hösli L (1973) The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline. Brain Res 52:399–402

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto-Kitsukawa S, Okuyama S, Aihara H (1988) Enhancing effect of taurine on the rat caudate spindle. I. Interaction of taurine with the nigro-striatal dopamine system. Pharmacol Biochem Behav 31:411–416

    Article  CAS  PubMed  Google Scholar 

  • Häusser MA, Yung WH, Lacey MG (1992) Taurine and glycine activate the same Cl conductance in substantia nigra dopamine neurones. Brain Res 571:103–108

    Article  PubMed  Google Scholar 

  • Hilgier W, Zielinska M, Borkowska HD, Gadamski R, Walski M, Oja SS, Saransaari P, Albrecht J (1999) Changes in the extracellular profiles of neuroactive amino acids in the rat striatum at the asymptomatic stage of hepatic failure. J Neurosci Res 56:76–84

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi T, Asanuma A, Yanagisawa K, Anzai K, Goto S (1988) Taurine and β-alanine act on both GABA and glycine receptors in Xenopus oocyte injected with mouse brain messenger RNA. Mol Brain Res 4:97–105

    Article  CAS  Google Scholar 

  • Huber JD, Egleton RD, Davis TP (2001) Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 24:719–725

    Article  CAS  PubMed  Google Scholar 

  • Huxtable RJ (1989) Taurine in the central nervous system and the mammalian actions of taurine. Prog Neurobiol 32:471–533

    Article  CAS  PubMed  Google Scholar 

  • Kontro P, Oja SS (1990) Interactions of taurine with GABAB binding sites in mouse brain. Neuropharmacology 29:243–247

    Article  CAS  PubMed  Google Scholar 

  • Missale C, Castelletti L, Govoni S, Spano PF, Trabucchi M, Hanbauer I (1985) Dopamine uptake is differentially regulated in rat striatum and nucleus accumbens. J Neurochem 45:51–56

    CAS  PubMed  Google Scholar 

  • O'Neill R (1986) Effects of intranigral injection of taurine and GABA on striatal dopamine release monitored voltammetrically in the unanaesthetized rat. Brain Res 382:28–32

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New York

  • Piepponen TP, Skujins A (2001) Rapid and sensitive step gradient assays of glutamate, glycine, taurine and γ-aminobutyric acid by high-performance liquid chromatography—fluorescence detection with o-phthalaldehyde-mercaptoethanol derivatization with an emphasis on microdialysis samples. J Chromatogr B 757:277–283

    Article  CAS  Google Scholar 

  • Quinn MR, Harris CL (1995) Taurine allosterically inhibits binding of [35S]-t-butylbicyclophosphorothionate (TBPS) to rat brain synaptic membranes. Neuropharmacology 34:1607–1613

    Article  CAS  PubMed  Google Scholar 

  • Riesselmann B, Rosenbaum F, Schneider V (1996) Alkohol und energy drink—kann der gemeinsame Konsum beider Getränke die Fahrtüchtigkeit beeinträchtigen? Blutalkohol 33:201–208

    Google Scholar 

  • Roth RH, Murrin LC, Walters JR (1976) Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Eur J Pharmacol 36:163–171

    Article  CAS  PubMed  Google Scholar 

  • Ruotsalainen M, Ahtee L (1996) Intrastriatal taurine increases striatal extracellular dopamine in a tetrodotoxin-sensitive manner in rats. Neurosci Lett 212:175–178

    Article  CAS  PubMed  Google Scholar 

  • Ruotsalainen M, Heikkilä M, Lillsunde P, Seppälä T, Ahtee L (1996) Taurine infused intrastriatally elevates, but intranigrally decreases striatal extracellular dopamine concentration in anaesthetised rats. J Neural Transm 103:935–946

    CAS  PubMed  Google Scholar 

  • Ruotsalainen M, Majasaari M, Salimäki J, Ahtee L (1998) Locally infused taurine, GABA and homotaurine alter differentially the striatal extracellular concentrations of dopamine and its metabolites in rats. Amino Acids 15:117–134

    CAS  PubMed  Google Scholar 

  • Seidl R, Peyrl A, Nicham R, Hauser E (2000) A taurine and caffeine-containing drink stimulates cognitive performance and well-being. Amino Acids 19:635–642

    CAS  PubMed  Google Scholar 

  • Semba J, Kito S, Toru M (1995) Characterisation of extracellular amino acids in striatum of freely moving rats by in vivo microdialysis. J Neural Transm 100:39–52

    CAS  Google Scholar 

  • Sgaragli GP, Pavàn F, Galli A (1975) Is taurine-induced hypothermia in the rat mediated by 5-HT? Naunyn-Schmiedebergs Arch Pharmacol 288:179–184

    Google Scholar 

  • Sgaragli GP, Carlà V, Magnani M, Giotti A (1978) Homotaurine and muscimol mimic taurine and GABA effects on muscle tone and temperature regulation. Naunyn-Schmiedebergs Arch Pharmacol 305:155–158

    Google Scholar 

  • Tossman U, Jonsson G, Ungerstedt U (1986) Regional distribution and extracellular levels of amino acids in rat central nervous system. Acta Physiol Scand 127:533–545

    CAS  PubMed  Google Scholar 

  • Toth E, Lajtha A (1981) Elevation of cerebral levels of nonessential amino acids in vivo by administration of large doses. Neurochem Res 6:1309–1317

    CAS  PubMed  Google Scholar 

  • Van Gelder NM, Bowers RJ (2001) Synthesis and characterization of N,N-dichlorinated amino acids: taurine, homotaurine, GABA and L-leucine. Neurochem Res 26:575–578

    Article  PubMed  Google Scholar 

  • Wahl P, Elster L, Schousboe A (1994) Identification and function of glycine receptors in cultured cerebellar granule cells. J Neurochem 62:2457–2463

    CAS  PubMed  Google Scholar 

  • Walters JR, Roth RH (1974) Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J Pharmacol Exp Ther 191:82–91

    CAS  PubMed  Google Scholar 

  • Westergren I, Nyström B, Hamberger A, Johansson BB (1995) Intracerebral dialysis and the blood-brain barrier. J Neurochem 64:229–234

    CAS  PubMed  Google Scholar 

  • Wu J-Y, Tang XW, Tsai WH (1992) Taurine receptor: kinetic analysis and pharmacological studies. In: Lombardini JB, Schaffer SW, Azuma J (eds) Taurine: nutritional value and mechanisms of action. Plenum, New York, pp 263–268

  • Yakimova K, Ovtcharov R (1989) Central temperature effects of the transmitter amino acids. Acta Physiol Pharmacol Bulg 15:50–53

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Marjo Vaha for her invaluable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ahtee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimäki, J., Scriba, G., Piepponen, T. . et al. The effects of systemically administered taurine and N-pivaloyltaurine on striatal extracellular dopamine and taurine in freely moving rats. Naunyn-Schmiedeberg's Arch Pharmacol 368, 134–141 (2003). https://doi.org/10.1007/s00210-003-0776-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0776-6

Keywords

Navigation