Skip to main content
Log in

Bridgeland’s stabilities on abelian surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we shall study the structure of walls for Bridgeland’s stability conditions on abelian surfaces. In particular, we shall study the structure of walls for the moduli spaces of rank 1 complexes on an abelian surface with the Picard number 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arcara, D., Bertram, A.: Bridgeland-stable moduli spaces for \(K\)-trivial surfaces. arXiv:0708.2247. J. Eur. Math. Soc. 15, 1–38 (2013)

    Google Scholar 

  2. Bayer, A.: Polynomial bridgeland stability conditions and the large volume limit. arXiv:0712.1083. Geom. Topol. 13(4), 2389–2425 (2009)

  3. Bridgeland, T.: Stability conditions on K3 surfaces. Duke Math. J. 141, 241–291 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Maciocia, A.: Computing the walls associated to bridgeland stability conditions on projective surfaces. arXiv:1202.4587

  5. Maciocia, A., Meachan, C.: Rank one bridgeland stable moduli spaces on a principally polarized abelian surface. Int. Math. Res. Notices 2013, 2054–2077 (2013). arXiv:1107.5304

  6. Meachan, C.: Moduli of bridgeland-stable objects. Thesis, University of Edinburgh (2012)

  7. Minamide, H., Yanagida, S., Yoshioka, K.: Fourier-Mukai transforms and the wall-crossing behavior for Bridgeland’s stability conditions. arXiv:1106.5217 v2

  8. Minamide, H., Yanagida, S., Yoshioka, K.: Some moduli spaces of Bridgeland’s stability conditions. Int. Math. Res. Notices (2013). doi:10.1093/imrn/rnt126

  9. Mukai, S.: On Fourier functors and their applications to vector bundles on abelian surfaces (in Japanese). In: The Proceeding of Daisū-kikagaku Symposium, pp. 76–93. Tohoku University, June (1979)

  10. Mukai, S.: On classification of vector bundles on abelian surfaces (in Japanese). RIMS Kôkyûroku 409, 103–127 (1980)

    Google Scholar 

  11. Mukai, S.: Duality between \(D(X)\) and \(D(\widehat{X})\) with its application to Picard sheaves. Nagoya Math. J. 81, 153–175 (1981)

    MATH  MathSciNet  Google Scholar 

  12. Toda, Y.: Moduli stacks and invariants of semistable objects on K3 surfaces. Adv. Math. 217, 2736–2781 (2008) arXiv:math/0703590.

    Google Scholar 

  13. Yanagida, S., Yoshioka, K.: Semi-homogeneous sheaves, Fourier–Mukai transforms and moduli of stable sheaves on abelian surfaces, section 7. arXiv:0906.4603 v1

  14. Yanagida, S., Yoshioka, K.: Semi-homogeneous sheaves, Fourier–Mukai transforms and moduli of stable sheaves on abelian surfaces. To appear in J. Reine Angew. Math. (available by online doi:10.1515/crelle-2011-0010)

  15. Yoshioka, K.: Chamber structure of polarizations and the moduli of stable sheaves on a ruled surface. Int. J. Math. 7, 411–431 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321, 817–884, math.AG/0009001 (2001)

    Google Scholar 

  17. Yoshioka, K.: Stability and the Fourier–Mukai transform II. Compos. Math. 145, 112–142 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yoshioka, K.: Fourier–Mukai transform on abelian surfaces. Math. Ann. 345(3), 493–524 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the referee for valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kōta Yoshioka.

Additional information

S. Yanagida is supported by JSPS Fellowships for Young Scientists (No. 21-2241, 24-4759). K. Yoshioka is supported by the Grant-in-aid for Scientific Research (No. 22340010), JSPS.

Appendix

Appendix

1.1 The action of Fourier–Mukai transforms on \(\mathbb{H }\)

Assume that \(\mathrm{NS }(X)=\mathbb{Z }H\). Then \(\beta +\sqrt{-1}\omega =\frac{z}{ \sqrt{n}}H\) with \(z \in \mathbb{H }\), where \(z:=x+\sqrt{-1}y\) with \(x \in \mathbb{R }\) and \(y \in \mathbb{R }_{>0}\). Thus we have an identification of \(\mathrm{NS }(X)_\mathbb{R } \times \mathrm{Amp }(X)_\mathbb{R }\) with \(\mathbb{H }\). We set \(Z_z:=Z_{(\beta ,\omega )}\).

We study the action of Fourier–Mukai transforms on our parameter space of stability conditions in Sect. 3.1. We set \(\gamma :=\beta +\lambda H\) and write

$$\begin{aligned} \widetilde{\beta }+\sqrt{-1} \widetilde{\omega }= \frac{z'}{\sqrt{n}}H,\; z' \in \mathbb{H }. \end{aligned}$$

Let \(\Phi _{X \rightarrow X_1}^\mathbf{E}:\mathbf{D}(X) \rightarrow \mathbf{D}(X_1)\) be a Fourier–Mukai transform such that \(\mathbf{E}\) is a coherent sheaf. Then there is

$$\begin{aligned} A=\left( \begin{array}{l@{\quad }l} a &{} b \\ c &{} d \end{array}\right) \in G \end{aligned}$$

such that \(\mu (\Phi _{X \rightarrow X_1}^\mathbf{E}(\mathfrak{k }_x))=\frac{a}{c} \sqrt{n}\) and \(\mu (\Phi _{X \rightarrow X_1}^\mathbf{E}(\mathcal{O }_X))=\frac{b}{d}\sqrt{n}\). \(X_1=M_H(c^2 e^{\frac{d}{c}\frac{H}{\sqrt{n}}})\) and \(\mathbf{E}\) is unique up to the action of \(X \times \mathrm{Pic }^0(X)\). Then

$$\begin{aligned} \theta (\Phi _{X \rightarrow X_1}^{\mathbf{E}})= \left( \begin{array}{l@{\quad }l} d &{} b \\ c &{} a \end{array}\right) \in G. \end{aligned}$$

Definition 8.1

For \(\Phi _{X \rightarrow X_1}^\mathbf{E}\), we set

$$\begin{aligned} \varphi (\Phi _{X \rightarrow X_1}^\mathbf{E}):= \pm \left( \begin{array}{ll} a &{} b\\ c &{} d \end{array}\right) \in G/\{\pm 1\}. \end{aligned}$$

For \(\Phi =\Phi _{X \rightarrow X_1}^{\mathbf{E}}\), we have

$$\begin{aligned} r_1 e^{\gamma }&= c^2-\frac{cd}{\sqrt{n}}H+d^2 \varrho _X, \\ r_1 e^{\gamma '}&= c^2+\frac{ac}{\sqrt{n}}\widehat{H}+a^2 \varrho _{X_1}. \end{aligned}$$

Hence

$$\begin{aligned} \frac{z}{\sqrt{n}}+\frac{d}{c \sqrt{n}}=-\lambda +\sqrt{-1} t,\; \frac{z'}{\sqrt{n}}-\frac{a}{c \sqrt{n}}= \frac{\lambda +\sqrt{-1} t}{(\lambda ^2+t^2)nc^2}, \end{aligned}$$

where \(\omega =tH\). Thus we get

$$\begin{aligned} \frac{z'}{\sqrt{n}}&= \frac{a}{c \sqrt{n}}-\frac{1}{c^2 n \Bigg (\frac{z}{\sqrt{n}}+\frac{d}{c \sqrt{n}}\Bigg )}\\&= \frac{ac z-(1-ad)}{c(cz+d)\sqrt{n}} =\frac{a z+b}{\sqrt{n}(c z+d)}. \end{aligned}$$

Therefore the action of \(A\) on \(\mathbb{H }\) is the natural action of \(\mathrm{SL }(2,\mathbb{R })\).

As in (3.3), we set

$$\begin{aligned} \zeta :=-c^2 \frac{\Bigg (\lambda -t \sqrt{-1}\Bigg )^2 (H^2)}{2}= -c^2 \frac{\Bigg (\frac{z}{\sqrt{n}}+\frac{d}{c\sqrt{n}}\Bigg )^2 (H^2)}{2} =-(cz+d)^2. \end{aligned}$$

Then we can rewrite the commutative diagram (3.2) as follows.

Proposition 8.2

For \(\Phi _{X \rightarrow X_1}^\mathbf{E}\) with \(\varphi (\Phi _{X \rightarrow X_1}^\mathbf{E})= \left( \begin{array}{l@{\quad }l} a &{} b\\ c &{} d \end{array}\right) \in G\),

$$\begin{aligned} -(cz+d)^2 Z_{\frac{az+b}{cz+d}\frac{\widehat{H}}{\sqrt{n}}} =Z_{z \frac{H}{\sqrt{n}}} \circ (\Phi _{X \rightarrow X_1}^\mathbf{E})^{-1}. \end{aligned}$$

We also have

$$\begin{aligned} \Phi _{X \rightarrow X_1}^\mathbf{E}(\mathbb{Q }e^{\lambda \frac{H}{{\sqrt{n}}}}) =\mathbb{Q }e^{\frac{a\lambda +b}{c\lambda +d}\frac{\widehat{H}}{\sqrt{n}}}. \end{aligned}$$

We now extend the action of \(G\) to \(\widehat{G}\). We set

$$\begin{aligned} \Delta :=\left( \begin{array}{l@{\quad }l} 1 &{} 0\\ 0 &{} -1 \end{array}\right) . \end{aligned}$$

We note that

$$\begin{aligned} \widehat{G}=G \rtimes \left\langle \Delta \right\rangle \end{aligned}$$

with

$$\begin{aligned} \left( \begin{array}{l@{\quad }l} 1 &{} 0\\ 0 &{} -1 \end{array}\right) \left( \begin{array}{l@{\quad }l} a &{} b\\ c &{} d \end{array}\right) \left( \begin{array}{l@{\quad }l} 1 &{} 0\\ 0 &{} -1 \end{array}\right) = \left( \begin{array}{l@{\quad }l} a &{} -b\\ -c &{} d \end{array}\right) . \end{aligned}$$

We define the action of \(\Delta \) on \(\mathbb{H }\) as \(\Delta (z):=-\overline{z}\). Then we have

$$\begin{aligned} \Delta (A(\Delta (z)))=\frac{az-b}{-cz+d},\; A=\left( \begin{array}{l@{\quad }l} a &{} b\\ c &{} d \end{array}\right) . \end{aligned}$$

Thus we have an action of \(\widehat{G}\) on \(\mathbb{H }\).

Proposition 8.3

We can extend the action of \(G\) to the action of \(\widehat{G}\) by

$$\begin{aligned} (g,\Delta ^n) \cdot z:= \left\{ \begin{array}{l@{\quad }l} g \cdot z, &{} 2|n,\\ -\overline{g \cdot z},&{} 2 \not | n, \end{array}\right. \end{aligned}$$

where \(g \in G\) and \(\overline{g \cdot z}\) is the complex conjugate of \(g \cdot z\).

Remark 8.4

In [14], we showed that the cohomological action of \(\mathrm{Eq }_0(\mathbf{D}(X),\mathbf{D}(X))\) defines a normal subgroup of \(G\) which is a conjugate of \(\Gamma _0(n)\) in \(\mathrm{GL }(2,\mathbb{R })\). More precisely, we set \(G_0:=\theta (\mathrm{Eq }_0(\mathbf{D}(X),\mathbf{D}(X)))\). Then

$$\begin{aligned} \left( \begin{array}{l@{\quad }l} \sqrt{n} &{} 0 \\ 0 &{} 1 \end{array}\right) ^{-1} G_0 \left( \begin{array}{l@{\quad }l} \sqrt{n} &{} 0 \\ 0 &{} 1 \end{array}\right) =\Gamma _0(n), \end{aligned}$$

where

$$\begin{aligned} \Gamma _0(n):= \left\{ \left. \left( \begin{array}{l@{\quad }l} a &{} b \\ c &{} d \end{array}\right) \in \mathrm{SL }(2,\mathbb{Z }) \right| c \in n \mathbb{Z } \right\} . \end{aligned}$$

We set \(\beta +\sqrt{-1}\omega =w H\). Then \(\mathrm{Eq }_0(\mathbf{D}(X),\mathbf{D}(X))\) acts on \(w\)-plane as the action of \(\Gamma _0(n)\) on \(w\)-plane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanagida, S., Yoshioka, K. Bridgeland’s stabilities on abelian surfaces. Math. Z. 276, 571–610 (2014). https://doi.org/10.1007/s00209-013-1214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1214-1

Mathematics Subject Classification (1991)

Navigation