Skip to main content
Log in

Geometry of curves with exceptional secant planes: linear series along the general curve

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study linear series on a general curve of genus g, whose images are exceptional with regard to their secant planes. Working in the framework of an extension of Brill–Noether theory to pairs of linear series, we prove that a general curve has no linear series with exceptional secant planes, in a very precise sense, whenever the total number of series is finite. Next, we partially solve the problem of computing the number of linear series with exceptional secant planes in a one-parameter family in terms of tautological classes associated with the family, by evaluating our hypothetical formula along judiciously-chosen test families. As an application, we compute the number of linear series with exceptional secant planes on a general curve equipped with a one-dimensional family of linear series. We pay special attention to the extremal case of d-secant (d − 2)-planes to (2d − 1)-dimensional series, which appears in the study of Hilbert schemes of points on surfaces. In that case, our formula may be rewritten in terms of hypergeometric series, which allows us both to prove that it is nonzero and to deduce its asymptotics in d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbarello E., Cornalba M., Griffiths P., Harris J.: Geometry of Algebraic Curves, Grundlehren der Math. Wiss., vol. 267. Springer, New York (1985)

    Google Scholar 

  2. Cotterill, E.: Geometry of curves with exceptional secant planes. arXiv:0706.2049

  3. Cotterill, E.: Geometry of curves with exceptional secant planes: effective divisors on \({\overline{\mathcal{M}}_g}\) (in preparation)

  4. Deutsch E.: Dyck path enumeration. Discret. Math. 204(1–3), 167–202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diaz S., Harris J.: Geometry of the Severi variety. Trans. Am. Math. Soc. 309(1), 1–34 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Du, R., Yin, J.: Counting labelled trees with given indegree sequence. http://arXiv.org/pdf/0712.4032v1

  7. Eisenbud D., Harris J.: Divisors on general curves and cuspidal rational curves. Invent. Math. 74(3), 371–418 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eisenbud D., Harris J.: A simpler proof of the Gieseker–Petri theorem on special divisors. Invent. Math. 74(2), 269–280 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eisenbud D., Harris J.: Limit linear series: basic theory. Invent. Math. 85(2), 337–371 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eisenbud D., Harris J.: Irreducibility and monodromy of some families of linear series. Ann. Sci. École Norm. Sup. (4) 20(1), 65–87 (1987)

    MathSciNet  MATH  Google Scholar 

  11. Farkas G.: Higher ramification and varieties of secant divisors on the generic curve. J. Lond. Math. Soc. (2) 78(2), 418–440 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gasper G., Rahman M.: Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, vol. 96. Cambridge University Press, New York (2004)

    Google Scholar 

  13. Harris J., Morrison I.: Slopes of effective divisors on the moduli space of curves. Invent. Math. 99(2), 321–355 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harris J., Tu L.: Chern numbers of kernel and cokernel bundles. Invent. Math. 75, 467–475 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khosla, D.: Moduli of curves with linear series. Harvard doctoral thesis (2005)

  16. Koepf W.: Hypergeometric Summation: An Algorithmic Apporach to Summation and Special Function Identities. Vieweg, Braunschweig/Wiesbaden (1998)

    Google Scholar 

  17. Le Barz P.: Sur les espaces multisécants aux courbes algébriques. Manuscr. Math. 119, 433–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Barz P.: Sur une formule de Castelnuovo pur les espaces multisécants. Bollettino U.M.I. 10-B, 381–387 (2007)

    MathSciNet  Google Scholar 

  19. Lehn M.: Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136(1), 157–207 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Macdonald I.G.: Some enumerative formulae for algebraic curves. Proc. Camb. Philos. Soc. 54, 399–416 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  21. Petkovšek M., Wilf H., Zeilberger D.: A = B. A. K. Peters, Wellesley (1996)

    MATH  Google Scholar 

  22. Ran Z.: Curvilinear enumerative geometry. Acta. Math. 155(1–2), 81–101 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ran Z.: Geometry on nodal curves. Compos. Math. 141(5), 1191–1212 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ran, Z.: Geometry and intersection theory on Hilbert schemes of families of nodal curves. arXiv:0803.4512

  25. Stanley R.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Math. 49. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  26. Shin, H., Zeng, J.: Proof of two combinatorial results arising in algebraic geometry. arXiv:0805.0067

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan Cotterill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotterill, E. Geometry of curves with exceptional secant planes: linear series along the general curve. Math. Z. 267, 549–582 (2011). https://doi.org/10.1007/s00209-009-0635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-009-0635-3

Keywords

Navigation