Skip to main content
Log in

On the dimension of divergence sets of dispersive equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We refine results of Carleson, Sjögren and Sjölin regarding the pointwise convergence to the initial data of solutions to the Schrödinger equation. We bound the Hausdorff dimension of the sets on which convergence fails. For example, with initial data in \({H^1(\mathbb{R}^{3})}\), the sets of divergence have dimension at most one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams D.R., Hedberg L.I.: Function Spaces and Potential Theory. Springer, New York (1996)

    Google Scholar 

  2. Barceló J.A., Bennett J.M., Carbery A., Ruiz A., Vilela M.C.: Some special solutions of the Schrödinger equation. Indiana Univ. Math. J. 56(4), 1581–1593 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barceló J.A., Bennett J.M., Carbery A., Ruiz A., Vilela M.C.: Strichartz inequalities with weights in Morrey–Campanato classes. Collect. Math. 61(1), 49–56 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barcelo J.A., Ruiz A., Vega L.: Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal. 150(2), 356–382 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beurling A.: Ensembles exceptionnels. (French). Acta Math. 72, 1–13 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carbery, A.: Radial Fourier multipliers and associated maximal functions. In: Recent Progress in Fourier Analysis (El Escorial, 1983). North-Holland Math. Stud., vol. 111, pp. 49–56. North-Holland, Amsterdam (1985)

  7. Carbery, A., Soria, F.: Pointwise Fourier inversion and localisation in \({\mathbb{R}^n}\). J. Fourier Anal. Appl. 3(special issue), 847–858 (1997)

    Google Scholar 

  8. Carleson, L.: Some analytic problems related to statistical mechanics. In: Euclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, 1979). Lecture Notes in Math., vol. 779, pp. 5–45. Springer, Berlin (1980)

  9. Cazenave T., Vega L., Vilela M.C.: A note on the nonlinear Schrödinger equation in weak L p spaces. Commun. Contemp. Math. 3, 153–162 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cowling, M.: Pointwise behaviour of solutions to Schrödinger equations. In: Harmonic Analysis (Cortona, 1982). Lecture Notes in Math., vol. 992, pp.~83–90. Springer, Berlin (1983)

  11. Dahlberg, B.E.J., Kenig, C.E.: A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Harmonic Analysis (Minneapolis, Minn., 1981). Lecture Notes in Math., vol. 908, pp. 205–209. Springer, Berlin (1982)

  12. Erdog͂an M.B.: A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not. 23, 1411–1425 (2005)

    Article  MathSciNet  Google Scholar 

  13. Iosevich A., Rudnev M.: On the Mattila integral associated with sign indefinite measures. J. Fourier Anal. Appl. 13(2), 167–173 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kenig C.E., Ruiz A.: A strong type (2, 2) estimate for a maximal operator associated to the Schrödinger equation. Trans. Am. Math. Soc. 280(1), 239–246 (1983)

    MATH  MathSciNet  Google Scholar 

  15. Lee, S.: On pointwise convergence of the solutions to Schrödinger equations in \({\mathbb{R}^{2}}\). Int. Math. Res. Not. (2006). Art. ID 32597, 21

  16. Mattila P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  17. Mattila P.: Spherical averages of Fourier transforms of measures with finite energy: dimension of intersections and distance sets. Mathematika 34(2), 207–228 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Montini E.: On the capacity of sets of divergence associated with the spherical partial integral operator. Trans. Am. Math. Soc. 355(4), 1415–1441 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rogers K.M.: Strichartz estimates via the Schrödinger maximal operator. Math. Ann. 343(3), 603–622 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rogers K.M., Vargas A., Vega L.: Pointwise convergence of solutions to the nonelliptic Schrödinger equation. Indiana Univ. Math. J. 55(6), 1893–1906 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Salem R., Zygmund A.: Capacity of sets and Fourier series. Trans. Am. Math. Soc. 59, 23–41 (1946)

    MATH  MathSciNet  Google Scholar 

  22. Seeger A.: Endpoint inequalities for Bochner-Riesz multipliers in the plane. Pac. J. Math. 174, 543–553 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Sjögren P., Sjölin P.: Convergence properties for the time dependent Schrödinger equation. Ann. Aca. Sci. Fen. 14, 13–25 (1989)

    MATH  Google Scholar 

  24. Sjölin P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55(3), 699–715 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sjölin P.: Estimates of spherical averages of Fourier transforms and dimensions of sets. Mathematika 40(2), 322–330 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sjölin P.: Maximal estimates for solutions to the nonelliptic Schrödinger equation. Bull. Lond. Math. Soc. 39(3), 404–412 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sjölin P., Soria F.: Estimates of averages of Fourier transforms with respect to general measures. Proc. R. Soc. Edinburgh Sect. A 133(4), 943–950 (2003)

    Article  MATH  Google Scholar 

  28. Stein E.M.: On limits of sequences of operators. Ann. Math. (2) 74, 140–170 (1961)

    Article  Google Scholar 

  29. Stein, E.M.: Singular integrals and differentiability properties of functions. In: Princeton Mathematical Series, No. 30, xiv+290. Princeton University Press, Princeton (1970)

  30. Tao T.: A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13(6), 1359–1384 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tao T., Vargas A.: A bilinear approach to cone multipliers. Part II: applications. Geom. Funct. Anal. 10(1), 216–258 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tao T., Vargas A., Vega L.: A bilinear approach to the restriction and Kakeya conjectures. J. Am. Math. Soc. 11, 967–1000 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vega L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Am. Math. Soc. 102(4), 874–878 (1988)

    MATH  MathSciNet  Google Scholar 

  34. Walther, B.G.: Some L p(L )- and L 2(L 2)-estimates for oscillatory Fourier transforms. In: Analysis of Divergence (Orono, ME, 1997), Appl. Numer. Harmon. Anal., pp. 213–231. Birkhäuser Boston, Boston (1999)

  35. Wolff T.: Decay of circular means of Fourier transforms of measures. Int. Math. Res. Not. 10, 547–567 (1999)

    Article  MathSciNet  Google Scholar 

  36. Žubrinić D.: Singular sets of Sobolev functions. C. R. Math. Acad. Sci. Paris 334(7), 539–544 (2002)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Rogers.

Additional information

J. A. Barceló is supported by MEC grant MTM2008-02568, and A. Carbery and K. M. Rogers by MTM2007-60952. J. Bennett is supported by EPSRC grant EP/E022340/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barceló, J.A., Bennett, J., Carbery, A. et al. On the dimension of divergence sets of dispersive equations. Math. Ann. 349, 599–622 (2011). https://doi.org/10.1007/s00208-010-0529-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0529-z

Keywords

Navigation