Skip to main content

Advertisement

Log in

Bessel pairs and optimal Hardy and Hardy–Rellich inequalities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We give necessary and sufficient conditions on a pair of positive radial functions V and W on a ball B of radius R in R n, n ≥ 1, so that the following inequalities hold for all \({u \in C_{0}^{\infty}(B)}\) :

$$\label{one} \int\limits_{B}V(x)|\nabla u |^{2}dx \geq \int\limits_{B} W(x)u^2dx,$$
$$\label{two} \int\limits_{B}V(x)|\Delta u |^{2}dx \geq\int\limits_{B} W(x)|\nabla u|^{2}dx+(n-1)\int\limits_{B}\left(\frac{V(x)}{|x|^2}-\frac{V_r(|x|)}{|x|}\right)|\nabla u|^2dx.$$

This characterization makes a very useful connection between Hardy-type inequalities and the oscillatory behaviour of certain ordinary differential equations, and helps in the identification of a large number of such couples (V, W)—that we call Bessel pairs—as well as the best constants in the corresponding inequalities. This allows us to improve, extend, and unify many results—old and new—about Hardy and Hardy–Rellich type inequalities, such as those obtained by Caffarelli et al. (Compos Math 53:259–275, 1984), Brezis and Vázquez (Revista Mat. Univ. Complutense Madrid 10:443–469, 1997), Wang and Willem (J Funct Anal 203:550–568, 2003), Adimurthi et al. (Proc Am Math Soc 130:489–505, 2002), and many others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Chaudhuri N., Ramaswamy N.: An improved Hardy Sobolev inequality and its applications. Proc. Am. Math. Soc. 130, 489–505 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Adimurthi, Grossi M., Santra S.: Optimal Hardy-Rellich inequalities, maximum principles and related eigenvalue problems. J. Funct. Anal. 240, 36–83 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Agueh M., Ghoussoub N., Kang X.S.: Geometric inequalities via a general comparison principle for interacting gases. Geom. Funct. Anal. 14(1), 215–244 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barbatis G.: Best constants for higher-order Rellich inequalities in L P(Ω). Math. Z. 255, 877–896 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beckner W.: Weighted inequalities and Stein-Weiss potentials. Forum Math. 20, 587–606 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vasquez J.L.: Hardy-Poincaré inequalities and applications to nonlinear diffusions. C. R. Acad. Sci. Paris, Ser. I 344, 431–436 (2007)

    MATH  Google Scholar 

  7. Brezis H., Lieb E.H.: Sobolev inequalities with remainder terms. J. Funct. Anal. 62, 73–86 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brezis H., Marcus M.: Hardy’s inequality revisited. Ann. Scuola. Norm. Sup. Pisa 25, 217–237 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Brezis H., Marcus M., Shafrir I.: Extremal functions for Hardy’s inequality with weight. J. Funct. Anal. 171, 177–191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brezis H., Vázquez J.L.: Blowup solutions of some nonlinear elliptic problems. Revista Mat. Univ. Complutense Madrid 10, 443–469 (1997)

    MATH  Google Scholar 

  11. Caffarelli L., Kohn R., Nirenberg L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Catrina F., Wang Z.-Q.: On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Commun. Pure Appl. Math. 54, 229–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cordero-Erausquin D., Nazaret B., Villani C.: A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cowan, C., Esposito, P., Ghoussoub, N., Moradifam, A.: The critical dimension for a fourth order elliptic problem with singular nonlinearity. Arch. Ration. Mech. Anal. (to appear)

  15. Davies E.B.: A review of Hardy inequalities. Oper. Theory Adv. Appl. 110, 55–67 (1999)

    Google Scholar 

  16. Davies E.B., Hinz A.M.: Explicit constants for Rellich inequalities in L p (Ω). Math. Z. 227, 511–523 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Esposito, P., Ghoussoub, N., Guo, Y.J.: Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS, 320 pp. Courant Institute Lecture Notes, AMS (2010)

  18. Filippas S., Tertikas A.: Optimizing improved Hardy inequalities. J. Funct. Anal. 192(1), 186–233 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fleckinger J., Harrell E.M. II, Thelin F.: Boundary behaviour and estimates for solutions of equations containing the p-Laplacian. Electron. J. Differ. Equ. 38, 1–19 (1999)

    Google Scholar 

  20. Ghoussoub N., Moradifam A.: On the best possible remaining term in the Hardy inequality. Proc. Nat. Acad. Sci. 105(37), 13746–13751 (2008)

    Article  MathSciNet  Google Scholar 

  21. Hartman P.: Ordinary Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  22. Huang C.: Oscillation and Nonoscillation for second order linear differential equations. J. Math. Anal. Appl. 210, 712–723 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liskevich V., Lyakhova S., Moroz V.: Positive solutions to nonlinear p-Laplace equations with Hardy potential in exterior domains. J. Differ. Equ. 232, 212–252 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Moradifam A.: On the critical dimension of a fourth order elliptic problem with negative exponent. J. Differ. Equ. 248, 594–616 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Moradifam A.: The singular extremal solutions of the bilaplacian with exponential nonlinearity. Proc. Am. Math. Soc. 138, 1287–1293 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Moradifam, A.: Optimal weighted Hardy-Rellich inequalities on \({H^2\cap H^1_0}\) . (submitted)

  27. Opic, B., Kufner, A.: Hardy type inequalities. In: Pitman Research Notes in Mathematics, vol. 219. Longman, New York (1990)

  28. Peral I., Vázquez J.L.: On the stability and instability of the semilinear heat equation with exponential reaction term. Arch. Ration. Mech. Anal. 129, 201–224 (1995)

    Article  MATH  Google Scholar 

  29. Simon B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7, 447–526 (1982)

    Article  MATH  Google Scholar 

  30. Sugie J., Kita K., Yamaoka N.: Oscillation constant of second-order non-linear self-adjoint differential equations. Ann. Mat. Pura Appl. 181(4), 309–337 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tertikas A.: Critical phenomena in linear elliptic problems. J. Funct. Anal. 154, 42–66 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tertikas A., Zographopoulos N.B.: Best constants in the Hardy-Rellich inequalities and related improvements. Adv. Math. 209, 407–459 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vázquez J.L.: Domain of existence and blowup for the exponential reaction diffusion equation. Indiana Univ. Math. J. 48, 677–709 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vázquez J.L., Zuazua E.: The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal. 173, 103–153 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang Z.-Q., Willem M.: Caffarelli-Kohn-Nirenberg inequalities with remainder terms. J. Funct. Anal. 203, 550–568 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wintner A.: On the nonexistence of conjugate points. Am. J. Math. 73, 368–380 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wintner A.: On the comparision theorem of Knese-Hille. Math. Scand. 5, 255–260 (1957)

    MATH  MathSciNet  Google Scholar 

  38. Wong J.S.W.: Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients. Trans. Am. Math. Soc. 144, 197–215 (1969)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassif Ghoussoub.

Additional information

N. Ghoussoub partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada and A. Moradifam partially supported by a Killam Predoctoral Scholarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoussoub, N., Moradifam, A. Bessel pairs and optimal Hardy and Hardy–Rellich inequalities. Math. Ann. 349, 1–57 (2011). https://doi.org/10.1007/s00208-010-0510-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0510-x

Keywords

Navigation