Skip to main content
Log in

Universal deformation rings need not be complete intersections

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We answer a question of M. Flach by showing that there is a linear representation of a profinite group whose (unrestricted) universal deformation ring is not a complete intersection. We show that such examples arise in arithmetic in the following way. There are infinitely many real quadratic fields F for which there is a mod 2 representation of the Galois group of the maximal unramified extension of F whose universal deformation ring is not a complete intersection. Finally, we discuss bounds on the singularities of universal deformation rings of representations of finite groups in terms of the nilpotency of the associated defect groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleher F.M. (2002). Universal deformation rings and Klein four defect groups. Trans. Am. Math. Soc. 354:3893–3906

    Article  MATH  MathSciNet  Google Scholar 

  2. Bleher, F.M.: Universal deformation rings and dihedral defect groups, ArXiv math. RT/0607571

  3. Bleher F.M., Chinburg T. (2000). Universal deformation rings and cyclic blocks. Math. Ann. 318:805–836

    Article  MATH  MathSciNet  Google Scholar 

  4. Bleher F.M., Chinburg T. (2003). Applications of versal deformations to Galois theory. Comment. Math. Helv. 78:45–64

    MATH  MathSciNet  Google Scholar 

  5. Bleher F.M., Chinburg T. (2006). Universal deformation rings need not be complete intersections. C. R. Math. Acad. Sci. Paris 342: 229–232

    MATH  MathSciNet  Google Scholar 

  6. Böckle G. (2001). On the density of modular points in universal deformation spaces. Amer. J. Math. 123:985–1007

    Article  MATH  MathSciNet  Google Scholar 

  7. Böckle G., Khare C. (2006). Mod l representations of arithmetic fundamental groups. II. A conjecture of A. J. de Jong. Compos. Math. 142:271–294

    Article  MATH  Google Scholar 

  8. Boston, N.: Galois p-groups unramified at p–a survey. In: Primes and Knots (eds.) Toshitake Kohno and Masanori Morishita, Contemp. Math. (to appear)

  9. Chinburg, T.: Can deformation rings of group representations not be local complete intersections? In: Cornelissen, G., Oort, F. (eds) Bouw, I., Chinburg, T., Cornelissen, C.G., Glass, D., Lehr, C., Matignon, M., Oort, R.P., Wewers, S., Problems from the Workshop on Automorphisms of Curves. Rend. Sem. Mat. Univ. Padova 113, 129–177 (2005)

  10. de Jong A.J. (2001). A conjecture on arithmetic fundamental groups. Israel J. Math. 121:61–84

    MATH  MathSciNet  Google Scholar 

  11. de Smit, B., Lenstra, H.W.: Explicit construction of universal deformation rings. In: Modular Forms and Fermat’s Last Theorem, pp. 313–326 (Boston, MA, 1995). Springer, Berlin Heidelberg New York, (1997)

  12. Emerton M., Calegari F. (2005). On the ramification of Hecke algebras at Eisenstein primes. Invent. Math. 160: 97–144

    Article  MATH  MathSciNet  Google Scholar 

  13. Emerton M., Pollack R., Weston T. (2006). Variation of Iwasawa invariants in Hida families. Invent. Math. 163:523–580

    Article  MATH  MathSciNet  Google Scholar 

  14. Gaitsgory, D.: On de Jong’s conjecture, ArXiv math.AG/0402184.

  15. Grothendieck A. (1967). Éléments de géométrie algébrique, Chapitre IV, Quatriéme Partie. Publ. Math. IHES 32:5–361

    Google Scholar 

  16. Kisin M. (2003). Overconvergent modular forms and the Fontaine–Mazur conjecture. Invent. Math. 153:373–454

    Article  MATH  MathSciNet  Google Scholar 

  17. Kisin, M.: Moduli of finite flat group schemes and modularity. Preprint (2006)

  18. Mazur, B.: Deforming Galois representations. In: Galois groups over \(\mathbb{Q}\), pp. 385–437 (Berkeley, CA, 1987). Springer, Berlin Heidelberg New York (1989)

  19. PARI2, PARI/GP, version 2.1.5, Bordeaux (2004) megrez.math.u-bordeaux.fr/pub/numberfields/

  20. Serre, J.P.: Modular forms of weight one and Galois representations. In: Algebraic number fields: L-functions and Galois properties. Proc. Sympos., Univ. Durham, Durham, 1975, 193–268. Academic, London (1977)

  21. Taylor R., Wiles A. (1995). Ring-theoretic properties of certain Hecke algebras. Ann. Math. 141:553–572

    Article  MATH  MathSciNet  Google Scholar 

  22. Washington L.C. (1982). Introduction to Cyclotomic Fields. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  23. Wiles A. (1995). Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141:443–551

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ted Chinburg.

Additional information

The first author was supported in part by NSF Grant DMS01-39737 and NSA Grant H98230-06-1-0021. The second author was supported in part by NSF Grants DMS00-70433 and DMS05-00106.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleher, F.M., Chinburg, T. Universal deformation rings need not be complete intersections. Math. Ann. 337, 739–767 (2007). https://doi.org/10.1007/s00208-006-0054-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0054-2

Mathematics Subject Classification (2000)

Navigation