Skip to main content
Log in

Radial Solutions and Phase Separation in a System of Two Coupled Schrödinger Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the nonlinear elliptic system

$$\left \{ \begin{aligned} -&\Delta u +u - u^3 -\beta v^2u = 0\quad \rm{in}\, \mathbb B,\\ -&\Delta v +v - v^3 -\beta u^2v = 0\quad \rm{in}\, \mathbb B,\\ &u,v > 0 \quad \rm{in}\, \mathbb B,\quad u=v=0 \quad \rm{on}\, \partial \mathbb B, \end{aligned} \right.$$

where \(N\leqq 3\) and \(\mathbb B \subset \mathbb {R}^N\) is the unit ball. We show that, for every \(\beta \leqq -1\) and \(k \in \mathbb N\), the above problem admits a radially symmetric solution (u β , v β ) such that u β v β changes sign precisely k times in the radial variable. Furthermore, as \(\beta \to -\infty\), after passing to a subsequence, u β w + and v β w uniformly in \(\mathbb B\), where w = w +w has precisely k nodal domains and is a radially symmetric solution of the scalar equation Δww + w 3 = 0 in \(\mathbb B\), w = 0 on \(\partial \mathbb B\). Within a Hartree–Fock approximation, the result provides a theoretical indication of phase separation into many nodal domains for Bose–Einstein double condensates with strong repulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amann H. (1985) Global existence for semilinear parabolic systems. J. Reine Angew. Math. 360: 47–83

    MATH  MathSciNet  Google Scholar 

  2. Ambrosetti A., Colorado E. (2006) Bound and ground states of coupled nonlinear Schrodinger equations. C.R. Math. Acad. Sci. Paris 342: 453–458

    MATH  MathSciNet  Google Scholar 

  3. Akhmediev N., Ankiewicz A. (1998) Partially coherent solitons on a finite background. Phys. Rev. Lett. 82: 2661–2665

    Article  ADS  Google Scholar 

  4. Angenent S. (1988) The zero set of a solution of a parabolic equation. J. Reine Angew. Math. 390: 79–96

    MATH  MathSciNet  Google Scholar 

  5. Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. preprint.

  6. Bartsch T., Willem M. (1993) Infinitely many radial solutions of a semilinear elliptic problem on R N. Arch. Ration. Mech. Anal. 124(3): 261–276

    Article  MATH  MathSciNet  Google Scholar 

  7. Cazenave T., Lions P.-L. (1984) Solutions globales d’équations de la chaleur semi linéaires. Comm. Partial Differ. Equ. 9(10): 955–978

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen X.Y., Poláčik P. (1996) Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball. J. Reine Angew. Math. 472: 17–51

    MATH  MathSciNet  Google Scholar 

  9. Chang S., Lin C.S., Lin T.C., Lin W. (2004) Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates. Phys. D 196(3–4): 341–361

    Article  MATH  MathSciNet  Google Scholar 

  10. Christodoulides D.N., Coskun T.H., Mitchell M., Segev M. (1997) Theory of incoherent self-focusing in biased photorefractive media. Phys. Rev. Lett. 78: 646–649

    Article  ADS  Google Scholar 

  11. Conti M., Merizzi L., Terracini S. (2000) Radial solutions of superlinear equations on R N. I. A global variational approach. Arch. Ration. Mech. Anal. 153(4): 291–316

    MATH  MathSciNet  Google Scholar 

  12. Conti M., Terracini S. (2000) Radial solutions of superlinear equations on R N. II. The forced case. Arch. Ration. Mech. Anal. 153(4): 317–339

    Article  MATH  MathSciNet  Google Scholar 

  13. Conti M., Terracini S., Verzini G. (2002) Nehari’s problem and competing species systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(6): 871–888

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Conti M., Terracini S., Verzini G. (2005) Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195(2): 524–560

    Article  MATH  MathSciNet  Google Scholar 

  15. Dancer E.N., Du Y. (1994) Competing species equations with diffusion, large interactions, and jumping nonlinearities. J. Differ. Equ. 114(2): 434–475

    Article  MATH  MathSciNet  Google Scholar 

  16. Esry B.D., Greene C.H., Burke Jr J.P., Bohn J.L. (1997) Hartree–Fock theory for double condensates. Phys. Rev. Lett. 78: 3594–3597

    Article  ADS  Google Scholar 

  17. Gilbarg D., Trudinger N.S. (1983) Elliptic Partial Differential Equations of Second order, 2nd edn. Springer, Heidelberg

    MATH  Google Scholar 

  18. Hall D.S., Matthews M.R., Ensher J.R., Wieman C.E., Cornell E.A. (1998) Dynamics of component separation in a binary mixture of Bose–Einstein condensates. Phys. Rev. Lett. 81: 1539–1542

    Article  ADS  Google Scholar 

  19. Henry D.B. (1985) Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations. J. Differ. Equ. 59: 165–205

    Article  MATH  MathSciNet  Google Scholar 

  20. Hioe F.T. (1999) Solitary waves for N coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 82: 1152–1155

    Article  ADS  Google Scholar 

  21. Hioe F.T., Salter T.S. (2002) Special set and solutions of coupled nonlinear Schrödinger equations. J. Phys. A: Math. Gen. 35: 8913–8928

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Kanna T., Lakshmanan M. (2001) Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 86: 5043–5046

    Article  ADS  Google Scholar 

  23. Lin T.-C., Wei J.-C. (2005) Ground state of N coupled nonlinear Schrödinger equations in R n, \(n \leqq 3\). Commun. Math. Phys. 255(3): 629–653

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Lin T.C., Wei J. (2005) Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(4): 403–439

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Lin, T.C., Wei, J.: Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations. Phys. D: Nonlinear Phenomena, to appear

  26. Maia L.A., Montefusco E., Pellacci B. (2006) Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229: 743–767

    Article  MATH  MathSciNet  Google Scholar 

  27. Matano H. (1982) Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29: 401–441

    MATH  MathSciNet  Google Scholar 

  28. Mitchell M., Chen Z., Shih M., Segev M. (1996) Self-Trapping of partially spatially incoherent light. Phys. Rev. Lett. 77: 490–493

    Article  ADS  Google Scholar 

  29. Mitchell M., Segev M. (1997) Self-trapping of incoherent white light. Nature 387: 880–882

    Article  ADS  Google Scholar 

  30. Myatt C.J., Burt E.A., Ghrist R.W., Cornell E.A., Wieman C.E. (1997) Production of two overlapping Bose–Einstein condensates by sympathetic cooling. Phys. Rev. Lett. 78: 586–589

    Article  ADS  Google Scholar 

  31. Nehari Z. (1961) Characteristic values associated with a class of non-linear second-order differential equations. Acta Math. 105: 141–175

    Article  MathSciNet  Google Scholar 

  32. Nickel K. (1962) Gestaltaussagen über Lösungen parabolischer Differentialgleichungen. J. Reine Angew. Math. 211: 78–94

    MATH  MathSciNet  Google Scholar 

  33. Quittner P. (2004) Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems. NoDEA Nonlinear Differ. Equ. Appl. 11: 237–258

    Article  MATH  MathSciNet  Google Scholar 

  34. Sattinger D.H. (1969) On the total variation of solutions of parabolic equations. Math. Ann. 183: 78–92

    Article  MATH  MathSciNet  Google Scholar 

  35. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations. preprint.

  36. Struwe M. (1980) Multiple solutions of anticoercive boundary value problems for a class of ordinary differential equations of second order. J. Differ. Equ. 37(2): 285–295

    Article  MATH  MathSciNet  Google Scholar 

  37. Struwe M. (1981) Infinitely many solutions of superlinear boundary value problems with rotational symmetry. Arch. Math. (Basel) 36(4): 360–369

    MATH  MathSciNet  Google Scholar 

  38. Struwe M. (1982) Superlinear elliptic boundary value problems with rotational symmetry. Arch. Math. (Basel) 39(3): 233–240

    MATH  MathSciNet  Google Scholar 

  39. Struwe M. (1990) Variational Methods. Springer, Berlin

    MATH  Google Scholar 

  40. Terracini S., Verzini G. (2001) Solutions of prescribed number of zeroes to a class of superlinear ODE’s systems. NoDEA Nonlinear Differ. Equ. Appl. 8: 323–341

    Article  MATH  MathSciNet  Google Scholar 

  41. Timmermans E. (1998) Phase separation of Bose–Einstein condensates. Phys. Rev. Lett. 81: 5718–5721

    Article  ADS  Google Scholar 

  42. Troy W.C. (1981) Symmetry properties in systems of semilinear elliptic equations. J. Differ. Equ. 42(3): 400–413

    Article  MATH  MathSciNet  Google Scholar 

  43. Wei, J.C., Weth, T.: Nonradial symmetric bound states for a system of coupled Schrödinger equations. preprint.

  44. Willem M. (1996) Minimax theorems. PNLDE 24, Birkhäuser, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Weth.

Additional information

Communicated by C.A. Stuart

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Weth, T. Radial Solutions and Phase Separation in a System of Two Coupled Schrödinger Equations. Arch Rational Mech Anal 190, 83–106 (2008). https://doi.org/10.1007/s00205-008-0121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0121-9

Keywords

Navigation