Skip to main content
Log in

An Initial and Boundary Value Problem Modeling of Fish-like Swimming

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we consider an initial and boundary value problem that models the self-propelled motion of solids in a bidimensional viscous incompressible fluid. The self-propelling mechanism, consisting of appropriate deformations of the solids, is a simplified model of the propulsion mechanism of fish-like swimmers. The governing equations consist of the Navier–Stokes equations for the fluid, coupled to Newton’s laws for the solids. Since we consider the case in which the fluid–solid system fills a bounded domain we have to tackle a free boundary value problem. The main theoretical result in the paper asserts the global existence and uniqueness (up to possible contacts) of strong solutions of this problem. The second novel result of this work is the provision of a numerical method for the fluid–solid system. This method provides a simulation of the simultaneous displacement of several swimmers and is tested on several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Borelli G. (1989) On the Movement of Animals. Springer, New York

    Google Scholar 

  2. Boukir K., Maday Y., Métivet B., Razafindrakoto E. (1997) A high-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454

    Article  ADS  MATH  Google Scholar 

  3. Boulakia M. (2003) Existence of weak solutions for the motion of an elastic structure in an incompressible viscous fluid. C. R. Math. Acad. Sci. Paris 336, 985–990

    MathSciNet  MATH  Google Scholar 

  4. Carling J., Williams T., Bowtell G. (1998) Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional Navier–Stokes equations and Newton’s laws of motion. J. Exp. Biol. 201, 3143–3166

    Google Scholar 

  5. Chambolle A., Desjardins B., Esteban M.J., Grandmont C. (2005) Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7, 368–404

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Childress S. (1981) Mechanics of Swimming and Flying, vol. 2 of Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge

    Google Scholar 

  7. Coutand D., Shkoller S. (2005) Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176, 25–102

    Article  MathSciNet  MATH  Google Scholar 

  8. Coutand D., Shkoller S. (2006) The interaction between quasilinear elastodynamics and the Navier–Stokes equations. Arch. Ration. Mech. Anal. 179, 303–352

    Article  MathSciNet  MATH  Google Scholar 

  9. Cumsille P., Tucsnak P. (2006) Wellposedness of the Navier–Stokes flow in the exterior of the rotating obstacle. Math. Methods Appl. Sci. 29, 595–623

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Cumsille, P., Takahashi, T.:Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Math. J. (to appear)

  11. Desjardins B., Esteban M., Grandmont C., Le Tallec P. (2001) Weak solutions for a fluid-elastic structure interaction model. Rev. Math. Comput. 14, 523–538

    MathSciNet  MATH  Google Scholar 

  12. Desjardins B., Esteban M.J. (1999) Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146, 59–71

    Article  MathSciNet  MATH  Google Scholar 

  13. Feireisl E. (2003) On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3, 419–441

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi G. (1999) On the steady self-propelled motion of a body in a viscous incompressible fluid. Arch. Ration. Mech. Anal. 148, 53–88

    Article  MathSciNet  MATH  Google Scholar 

  15. Galdi G.P.: On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications. In: Handbook of Mathematical Fluid Dynamics, Vol. I, pp. 653–791. North-Holland, Amsterdam, 2002

  16. Gray J. (1932) Study in animal locomotion IV—the propulsive powers of the dolphin. J. Exp. Biol. 10, 192–199

    Google Scholar 

  17. Gray J. (1936) Study in animal locomotion I—the movement of a fish with special reference to the eel. J. Exp. Biol. 13, 88–104

    Google Scholar 

  18. Gunzburger M., Lee H.-C., Seregin G. (2000) Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2, 219–266

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Inoue A., Wakimoto M. (1977) On existence of solutions of the Navier–Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 303–319

    MathSciNet  MATH  Google Scholar 

  20. Kanso E., Marsden J.E., Rowley C.W., Melli-Huber J.B. (2005) Locomotion of articulated bodies in a perfect fluid. J. Nonlin. Sci. 15, 255–289

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kelly S.D., Murray R.M. (1998) Modelling efficient pisciform swimming for control. Int. J. Robust Nonlin. Control 201, 3143–3166

    Google Scholar 

  22. Ladyzhenskaya O. (1969) The Mathematical Theory of Viscous Incomprehensible Flow. Gordon and Breach Science, New York

    Google Scholar 

  23. Leroyer A., Visonneau M. (2005) Numerical methods for ranse simulations of a self-propelled fish-like body. J. Fluids Struct. 20, 975–991

    Article  ADS  Google Scholar 

  24. Lighthill J.: Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics, Philadelphia, 1975

  25. Lions J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications, Vol. I. Springer, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181

  26. Liu H., Kawachi K. (1999) A numerical study of undulatory swimming swimming. J. Comput. Phys. 155, 223–247

    Article  ADS  MATH  Google Scholar 

  27. Maury B., Glowinski R. (1997) Fluid-particle flow: a symmetric formulation. Acad C. R. Sci. Paris Sér. I Math. 324, 1079–1084

    MathSciNet  MATH  ADS  Google Scholar 

  28. San Martín J., Scheid J.-F., Takahashi T., Tucsnak M. (2005) Convergence of the Lagrange–Galerkin method for the equations modelling the motion of a fluid-rigid system. SIAM J. Numer. Anal. 43, 1536–1571

    Article  MathSciNet  MATH  Google Scholar 

  29. San Martín J., Starovoitov V., Tucsnak M. (2002) Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161, 113–147

    Article  MathSciNet  MATH  Google Scholar 

  30. Sparenberg J.A. (2002) Survey of the mathematical theory of fish locomotion. J. Eng. Math. 44, 395–448

    Article  MathSciNet  MATH  Google Scholar 

  31. Takahashi T. (2003) Analysis of strong solutions for the equations modeling the motion of a rigid–fluid system in a bounded domain. Adv. Differ. Equ. 8, 1499–1532

    MATH  Google Scholar 

  32. Taylor, G.: Analysis of the swimming of long and narrow animals. Proc. R. Soc. Lond A. 214, (1952)

  33. Temam R. (1983) Problèmes mathématiques en plasticité. Gauthier-Villars, Montrouge

    MATH  Google Scholar 

  34. Tryantafyllou M., Tryantafyllou G. (1995) An efficient swimming machine. Sci. Am. 272, 64–70

    Article  Google Scholar 

  35. Wu, T.Y.: Mathematical biofluiddynamics and mechanophysiology of fish locomotion. Math. Methods Appl. Sci. 24, 1541–1564 (2001) Biofluiddynamics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge San Martín.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, J.S., Scheid, JF., Takahashi, T. et al. An Initial and Boundary Value Problem Modeling of Fish-like Swimming. Arch Rational Mech Anal 188, 429–455 (2008). https://doi.org/10.1007/s00205-007-0092-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0092-2

Keywords

Navigation