Skip to main content
Log in

The Regularity of Critical Points of Polyconvex Functionals

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

In this paper we are concerned with the question of regularity of critical points for functionals of the type eq1 We construct a smooth, strongly polyconvex eq2, and Lipschitzian weak solutions eq3 to the corresponding Euler-Lagrange system, which are nowhere C 1. Moreover we show that F can be chosen in such a way that these irregular weak solutions are weak local minimisers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aumann, R.J., Hart, S.: Bi-convexity and bi-martingales. Israel J. Math. 54, 159–180 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Ball, J.M.: Constitutive inequalities and existence theorems in nonlinear elastostatics. In: Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh 1976) Vol. I. Res. Notes in Math., No. 17. Pitman, London, 1977, pp. 187–241

  3. Ball, J.M.: Strict convexity, strong ellipticity and regularity in the calculus of variations. Math. Proc. Cambridge Philos. Soc. 87, 501–513 (1980)

    MathSciNet  MATH  Google Scholar 

  4. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100, 13–52 (1987)

    MathSciNet  MATH  Google Scholar 

  5. Chipot, M., Kinderlehrer, D.: Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103, 237–277 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Casadio Tarabusi, E.: An algebraic characterization of quasi-convex functions. Ricerche Mat. 42, 11–24 (1993)

    MATH  Google Scholar 

  7. Evans, L.C.: Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal. 95, 227–252 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Guillemin, V., Pollack, A.: Differential topology. Prentice-Hall Inc., Englewood Cliffs, NJ, 1974

  9. Gromov, M.: Partial differential relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Springer-Verlag, Berlin, 1986

  10. Kirchheim, B.: Rigidity and Geometry of microstructures. Habilitation thesis, University of Leipzig, 2003

  11. Kirchheim, B., Müller, S., Šverák, V.: Studying nonlinear PDE by geometry in matrix space. In: Gemetric analysis and Nonlinear partial differential equations, Stefan Hildebrandt & Hermann Karcher, (eds.), Springer-Verlag, 2003, pp. 347–395

  12. Kristensen, J., Taheri, A.: Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Rational Mech. Anal. 170, 63–89 (2003)

    Article  MATH  Google Scholar 

  13. Kuiper, N.H.: On C 1-isometric imbeddings. Nederl. Akad. Wetensch. Proc. Ser. A. 58, 545–556 (1955)

    MathSciNet  MATH  Google Scholar 

  14. Morrey, Jr. C.B.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York, 1966

  15. Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. (2) 157, 715–742 (2003)

    Google Scholar 

  16. Nash, J.: C 1 isometric imbeddings. Ann. Math. (2) 60, 383–396 (1954)

    Google Scholar 

  17. Nesi, V., Milton G.W.: Polycrystalline configurations that maximize electrical resistivity. J. Mech. Phys. Solids 39, 525–542 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Pedregal, P.: Laminates and microstructure. Eur. J. Appl. Math. 4, 121–149 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Scheffer, V.: Regularity and irregularity of solutions to nonlinear second order elliptic systems and inequalities. Dissertation, Princeton University, 1974

  20. Šverák, V.: Lower-semicontinuity of variational integrals and compensated compactness. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich 1994), Birkhäuser, Basel, 1995, pp. 1153–1158

  21. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, volume 39 of Res. Notes in Math. Pitman, Boston, Mass., 1979, pp. 136–212

  22. Tartar, L.: Some remarks on separately convex functions. In Microstructure and phase transition, volume 54 of IMA Vol. Math. Appl. Springer, New York, 1993, pp. 191–204

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Székelyhidi, Jr..

Additional information

V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Székelyhidi, Jr., L. The Regularity of Critical Points of Polyconvex Functionals. Arch. Rational Mech. Anal. 172, 133–152 (2004). https://doi.org/10.1007/s00205-003-0300-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0300-7

Keywords

Navigation