Skip to main content

Advertisement

Log in

Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art and clinical perspectives in neurodegenerative diseases

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Activation of microglial cells and impaired mitochondrial function are common pathological characteristics of many neurological diseases and contribute to increased generation of reactive oxygen species (ROS). It is nowadays accepted that oxidative damage and mitochondrial dysfunction are key hallmarks of classical neuroinflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. To counteract the detrimental effects of ROS and restore the delicate redox balance in the central nervous system (CNS), cells are equipped with an endogenous antioxidant defense mechanism consisting of several antioxidant enzymes. The production of many antioxidant enzymes is regulated at the transcriptional level by the transcription factor nuclear factor E2-related factor 2 (Nrf2). Although evidence is accumulating that activation of the Nrf2 pathway represents a promising therapeutic approach to restore the CNS redox balance by reducing ROS-mediated neuronal damage in experimental models of neurodegenerative disorders, only a few Nrf2-activating compounds have been tested in a clinical setting. We here provide a comprehensive synopsis on the role of ROS in common neurodegenerative disorders and discuss the therapeutic potential of the Nrf2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aβ:

β Amyloid

AD:

Alzheimer’s disease

ARE:

Antioxidant response elements

BBB:

Blood–brain barrier

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DMF:

Dimethyl fumarate

EAE:

Experimental autoimmune encephalomyelitis

HD:

Huntington’s disease

HTT:

Huntingtin

iNOS:

Inducible nitric oxide synthase

Keap1:

Kelch-like ECH-associated protein 1

MMF:

Monomethyl fumarate

MPTP:

1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine

MS:

Multiple sclerosis

mtDNA:

Mitochondrial DNA

NADPH:

Nicotinamide adenine dinucleotide phosphate

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

Nrf2:

Nuclear factor E2-related factor 2

6-OHDA:

6-hydroxydopamine

OxPhos:

Oxidative phosphorylation

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SN:

Substantia nigra

tBHQ:

Tert-butylhydroquinone

References

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B (1997a) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329

    PubMed  CAS  Google Scholar 

  • Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P, Halliwell B (1997b) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    PubMed  CAS  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334

    PubMed  CAS  Google Scholar 

  • Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803

    PubMed  CAS  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    PubMed  CAS  Google Scholar 

  • Beyer K, Ariza A (2007) Protein aggregation mechanisms in synucleinopathies: commonalities and differences. J Neuropathol Exp Neurol 66:965–974

    PubMed  CAS  Google Scholar 

  • Bo L, Dawson TM, Wesselingh S, Mork S, Choi S, Kong PA, Hanley D, Trapp BD (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778–786

    PubMed  CAS  Google Scholar 

  • Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF (2001) Increased oxidative damage to DNA in a transgenic mouse model of Huntington’s disease. J Neurochem 79:1246–1249

    PubMed  CAS  Google Scholar 

  • Bolanos JP, Almeida A, Stewart V, Peuchen S, Land JM, Clark JB, Heales SJ (1997) Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68:2227–2240

    PubMed  CAS  Google Scholar 

  • Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494

    PubMed  PubMed Central  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    PubMed  CAS  Google Scholar 

  • Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    PubMed  CAS  Google Scholar 

  • Browne SE, Beal MF (2006) Oxidative damage in Huntington’s disease pathogenesis. Antioxid Redox Signal 8:2061–2073

    PubMed  CAS  Google Scholar 

  • Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    PubMed  CAS  Google Scholar 

  • Browne SE, Ferrante RJ, Beal MF (1999) Oxidative stress in Huntington’s disease. Brain Pathol 9:147–163

    PubMed  CAS  Google Scholar 

  • Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85:705–717

    PubMed  CAS  Google Scholar 

  • Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214

    PubMed  CAS  Google Scholar 

  • Calabrese V, Raffaele R, Cosentino E, Rizza V (1994) Changes in cerebrospinal fluid levels of malondialdehyde and glutathione reductase activity in multiple sclerosis. Int J Clin Pharmacol Res 14:119–123

    PubMed  CAS  Google Scholar 

  • Calkins MJ, Jakel RJ, Johnson DA, Chan K, Kan YW, Johnson JA (2005) Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci USA 102:244–249

    PubMed  CAS  PubMed Central  Google Scholar 

  • Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492

    PubMed  CAS  Google Scholar 

  • Carlson NG, Rose JW (2006) Antioxidants in multiple sclerosis: do they have a role in therapy? CNS Drugs 20:433–441

    PubMed  CAS  Google Scholar 

  • Chen CM, Wu YR, Cheng ML, Liu JL, Lee YM, Lee PW, Soong BW, Chiu DT (2007) Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem Biophys Res Commun 359:335–340

    PubMed  CAS  Google Scholar 

  • Chen JW, Breckwoldt MO, Aikawa E, Chiang G, Weissleder R (2008) Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain 131:1123–1133

    PubMed  PubMed Central  Google Scholar 

  • Chen PC, Vargas MR, Pani AK, Smeyne RJ, Johnson DA, Kan YW, Johnson JA (2009) Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci USA 106:2933–2938

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chinta SJ, Andersen JK (2008) Redox imbalance in Parkinson’s disease. Biochim Biophys Acta 1780:1362–1367

    PubMed  CAS  PubMed Central  Google Scholar 

  • Clements CM, McNally RS, Conti BJ, Mak TW, Ting JP (2006) DJ-1, a cancer- and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci USA 103:15091–15096

    PubMed  CAS  PubMed Central  Google Scholar 

  • Colton CA, Gilbert DL (1987) Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 223:284–288

    PubMed  CAS  Google Scholar 

  • Colton CA, Chernyshev ON, Gilbert DL, Vitek MP (2000) Microglial contribution to oxidative stress in Alzheimer’s disease. Ann N Y Acad Sci 899:292–307

    PubMed  CAS  Google Scholar 

  • Cook AL, Vitale AM, Ravishankar S, Matigian N, Sutherland GT, Shan J, Sutharsan R, Perry C, Silburn PA, Mellick GD, Whitelaw ML, Wells CA, kay-Sim A, Wood SA (2011) NRF2 activation restores disease related metabolic deficiencies in olfactory neurosphere-derived cells from patients with sporadic Parkinson’s disease. PLoS one 6:e21907

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    PubMed  CAS  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    PubMed  CAS  Google Scholar 

  • De Groot CJ, Ruuls SR, Theeuwes JW, Dijkstra CD, Van der Valk P (1997) Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol 56:10–20

    PubMed  Google Scholar 

  • Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    PubMed  CAS  Google Scholar 

  • Ding Q, Markesbery WR, Cecarini V, Keller JN (2006) Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem Res 31:705–710

    PubMed  CAS  Google Scholar 

  • Doraiswamy PM, Finefrock AE (2004) Metals in our minds: therapeutic implications for neurodegenerative disorders. Lancet Neurol 3:431–434

    PubMed  CAS  Google Scholar 

  • Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 44:1873–1886

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dringen R, Pawlowski PG, Hirrlinger J (2005) Peroxide detoxification by brain cells. J Neurosci Res 79:157–165

    PubMed  CAS  Google Scholar 

  • Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schussel K, Muller WE (2003) Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem Pharmacol 66:1627–1634

    PubMed  CAS  Google Scholar 

  • Ellrichmann G, Petrasch-Parwez E, Lee DH, Reick C, Arning L, Saft C, Gold R, Linker RA (2011) Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS one 6:e16172

    PubMed  CAS  PubMed Central  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    PubMed  CAS  Google Scholar 

  • Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    PubMed  CAS  Google Scholar 

  • Farr SA, Ripley JL, Sultana R, Zhang Z, Niehoff ML, Platt TL, Murphy MP, Morley JE, Kumar V, Butterfield DA (2014) Antisense oligonucleotide against GSK-3beta in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic Biol Med 67:387–395

    PubMed  CAS  Google Scholar 

  • Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, Hersch SM, Beal MF (2002) Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington’s disease. J Neurosci 22:1592–1599

    PubMed  CAS  Google Scholar 

  • Ferretti G, Bacchetti T, Principi F, Di Ludovico F, Viti B, Angeleri VA, Danni M, Provinciali L (2005) Increased levels of lipid hydroperoxides in plasma of patients with multiple sclerosis: a relationship with paraoxonase activity. Mult Scler 11:677–682

    PubMed  CAS  Google Scholar 

  • Fiebiger SM, Bros H, Grobosch T, Janssen A, Chanvillard C, Paul F, Dorr J, Millward JM, Infante-Duarte C (2013) The antioxidant idebenone fails to prevent or attenuate chronic experimental autoimmune encephalomyelitis in the mouse. J Neuroimmunol 262:66–71

    PubMed  CAS  Google Scholar 

  • Fischer MT, Sharma R, Lim JL, Haider L, Frischer JM, Drexhage J, Mahad D, Bradl M, van Horssen J, Lassmann H (2012) NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 135:886–899

    PubMed  PubMed Central  Google Scholar 

  • Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K, Novas M, Sweetser MT, Viglietta V, Dawson KT (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367:1087–1097

    PubMed  CAS  Google Scholar 

  • French HM, Reid M, Mamontov P, Simmons RA, Grinspan JB (2009) Oxidative stress disrupts oligodendrocyte maturation. J Neurosci Res 87:3076–3087

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    PubMed  CAS  Google Scholar 

  • Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT, Yang M, Sheikh SI, Dawson KT (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367:1098–1107

    PubMed  CAS  Google Scholar 

  • Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR (2006) Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 342:184–190

    PubMed  CAS  Google Scholar 

  • Gray E, Thomas TL, Betmouni S, Scolding N, Love S (2008a) Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathol 18:86–95

    PubMed  Google Scholar 

  • Gray E, Thomas TL, Betmouni S, Scolding N, Love S (2008b) Elevated myeloperoxidase activity in white matter in multiple sclerosis. Neurosci Lett 444:195–198

    PubMed  CAS  Google Scholar 

  • Greco A, Minghetti L, Sette G, Fieschi C, Levi G (1999) Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology 53:1876–1879

    PubMed  CAS  Google Scholar 

  • Haider L, Fischer MT, Frischer JM, Bauer J, Hoftberger R, Botond G, Esterbauer H, Binder CJ, Witztum JL, Lassmann H (2011) Oxidative damage in multiple sclerosis lesions. Brain 134:1914–1924

    PubMed  PubMed Central  Google Scholar 

  • Healy DG, bou-Sleiman PM, Valente EM, Gilks WP, Bhatia K, Quinn N, Lees AJ, Wood NW (2004a) DJ-1 mutations in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75:144–145

    PubMed  CAS  PubMed Central  Google Scholar 

  • Healy DG, bou-Sleiman PM, Wood NW (2004b) PINK, PANK, or PARK? A clinicians’ guide to familial parkinsonism. Lancet Neurol 3:652–662

    PubMed  CAS  Google Scholar 

  • Hendriks JJ, Alblas J, Van Der Pol SM, van Tol EA, Dijkstra CD, De Vries HE (2004) Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J Exp Med 200:1667–1672

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hersch SM, Gevorkian S, Marder K, Moskowitz C, Feigin A, Cox M, Como P, Zimmerman C, Lin M, Zhang L, Ulug AM, Beal MF, Matson W, Bogdanov M, Ebbel E, Zaleta A, Kaneko Y, Jenkins B, Hevelone N, Zhang H, Yu H, Schoenfeld D, Ferrante R, Rosas HD (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2′dG. Neurology 66:250–252

    PubMed  CAS  Google Scholar 

  • Higgins GC, Beart PM, Shin YS, Chen MJ, Cheung NS, Nagley P (2010) Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J Alzheimers Dis 20(Suppl 2):S453–S473

    PubMed  Google Scholar 

  • Hofmann B, Hecht HJ, Flohe L (2002) Peroxiredoxins. Biol Chem 383:347–364

    PubMed  CAS  Google Scholar 

  • Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174:1241–1251

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huang X, Moir RD, Tanzi RE, Bush AI, Rogers JT (2004) Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Ann N Y Acad Sci 1012:153–163

    PubMed  CAS  Google Scholar 

  • Husain J, Juurlink BH (1995) Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species. Brain Res 698:86–94

    PubMed  CAS  Google Scholar 

  • Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S, Yamamoto M (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029

    PubMed  CAS  Google Scholar 

  • Iskander K, Li J, Han S, Zheng B, Jaiswal AK (2006) NQO1 and NQO2 regulation of humoral immunity and autoimmunity. J Biol Chem 281:30917–30924

    PubMed  CAS  Google Scholar 

  • Isobe C, Abe T, Terayama Y (2010) Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the cerebrospinal fluid of patients with living Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett 469:159–163

    PubMed  CAS  Google Scholar 

  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8:379–391

    PubMed  CAS  Google Scholar 

  • Jaiswal AK (2000) Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 29:254–262

    PubMed  CAS  Google Scholar 

  • Jakel RJ, Kern JT, Johnson DA, Johnson JA (2005) Induction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro. Toxicol Sci 87:176–186

    PubMed  CAS  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2008) Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis 5:118–121

    PubMed  CAS  Google Scholar 

  • Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496

    PubMed  Google Scholar 

  • Johnson F, Giulivi C (2005) Superoxide dismutases and their impact upon human health. Mol Asp Med 26:340–352

    CAS  Google Scholar 

  • Johnson DA, Amirahmadi S, Ward C, Fabry Z, Johnson JA (2010) The absence of the pro-antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis. Toxicol Sci 114:237–246

    PubMed  CAS  PubMed Central  Google Scholar 

  • Juurlink BH, Thorburne SK, Hertz L (1998) Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22:371–378

    PubMed  CAS  Google Scholar 

  • Kanninen K, Malm TM, Jyrkkanen HK, Goldsteins G, Keksa-Goldsteine V, Tanila H, Yamamoto M, Yla-Herttuala S, Levonen AL, Koistinaho J (2008) Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci 39:302–313

    PubMed  CAS  Google Scholar 

  • Kanninen K, Heikkinen R, Malm T, Rolova T, Kuhmonen S, Leinonen H, Yla-Herttuala S, Tanila H, Levonen AL, Koistinaho M, Koistinaho J (2009) Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 106:16505–16510

    PubMed  CAS  PubMed Central  Google Scholar 

  • Karg E, Klivenyi P, Nemeth I, Bencsik K, Pinter S, Vecsei L (1999) Nonenzymatic antioxidants of blood in multiple sclerosis. J Neurol 246:533–539

    PubMed  CAS  Google Scholar 

  • Karkkainen V, Pomeshchik Y, Savchenko E, Dhungana H, Kurronen A, Lehtonen S, Naumenko N, Tavi P, Levonen AL, Yamamoto M, Malm T, Magga J, Kanninen KM, Koistinaho J (2014) Nrf2 regulates neurogenesis and protects neural progenitor cells against Abeta toxicity. Stem Cells 32:1904–1916

    PubMed  CAS  Google Scholar 

  • Kasai H (2002) Chemistry-based studies on oxidative DNA damage: formation, repair, and mutagenesis. Free Radic Biol Med 33:450–456

    PubMed  CAS  Google Scholar 

  • Kim YJ, Ahn JY, Liang P, Ip C, Zhang Y, Park YM (2007) Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology. Cancer Res 67:546–554

    PubMed  CAS  Google Scholar 

  • Klivenyi P, Ferrante RJ, Gardian G, Browne S, Chabrier PE, Beal MF (2003) Increased survival and neuroprotective effects of BN82451 in a transgenic mouse model of Huntington’s disease. J Neurochem 86:267–272

    PubMed  CAS  Google Scholar 

  • Koch M, Ramsaransing GS, Arutjunyan AV, Stepanov M, Teelken A, Heersema DJ, De Keyser J (2006) Oxidative stress in serum and peripheral blood leukocytes in patients with different disease courses of multiple sclerosis. J Neurol 253:483–487

    PubMed  CAS  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    PubMed  CAS  Google Scholar 

  • Lee SC, Dickson DW, Liu W, Brosnan CF (1993) Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol 46:19–24

    PubMed  CAS  Google Scholar 

  • Li Y, Jaiswal AK (1992) Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J Biol Chem 267:15097–15104

    PubMed  CAS  Google Scholar 

  • Li HY, Zhong YF, Wu SY, Shi N (2007) NF-E2 related factor 2 activation and heme oxygenase-1 induction by tert-butylhydroquinone protect against deltamethrin-mediated oxidative stress in PC12 cells. Chem Res Toxicol 20:1242–1251

    PubMed  CAS  Google Scholar 

  • Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, Ge XL, Zhang J, Song XJ, Wang Y, Guo L (2013) Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol 250:239–249

    PubMed  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    PubMed  CAS  Google Scholar 

  • Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X, Buko A, Chollate S, Ellrichmann G, Bruck W, Dawson K, Goelz S, Wiese S, Scannevin RH, Lukashev M, Gold R (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134:678–692

    PubMed  Google Scholar 

  • Liu JS, Zhao ML, Brosnan CF, Lee SC (2001) Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol 158:2057–2066

    PubMed  CAS  PubMed Central  Google Scholar 

  • Long DJ, Jaiswal AK (2000) NRH:quinone oxidoreductase2 (NQO2). Chem Biol Interact 129:99–112

    PubMed  CAS  Google Scholar 

  • Long JD, Matson WR, Juhl AR, Leavitt BR, Paulsen JS (2012) 8OHdG as a marker for Huntington disease progression. Neurobiol Dis 46:625–634

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lovell MA, Ehmann WD, Mattson MP, Markesbery WR (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18:457–461

    PubMed  CAS  Google Scholar 

  • Lu F, Selak M, O’Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177:95–103

    PubMed  CAS  Google Scholar 

  • Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, Lassmann H, Turnbull DM (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132:1161–1174

    PubMed  PubMed Central  Google Scholar 

  • Maldonado PD, Molina-Jijon E, Villeda-Hernandez J, Galvan-Arzate S, Santamaria A, Pedraza-Chaverri J (2010) NAD(P)H oxidase contributes to neurotoxicity in an excitotoxic/prooxidant model of Huntington’s disease in rats: protective role of apocynin. J Neurosci Res 88:620–629

    PubMed  CAS  Google Scholar 

  • Mao P, Manczak M, Shirendeb UP, Reddy PH (2013) MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Biochim Biophys Acta 1832:2322–2331

    PubMed  CAS  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci 827:65–75

    PubMed  CAS  Google Scholar 

  • Marik C, Felts PA, Bauer J, Lassmann H, Smith KJ (2007) Lesion genesis in a subset of patients with multiple sclerosis: a role for innate immunity? Brain 130:2800–2815

    PubMed  PubMed Central  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    PubMed  CAS  Google Scholar 

  • Marklund SL (1982) Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci USA 79:7634–7638

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mason RP, Casu M, Butler N, Breda C, Campesan S, Clapp J, Green EW, Dhulkhed D, Kyriacou CP, Giorgini F (2013) Glutathione peroxidase activity is neuroprotective in models of Huntington’s disease. Nat Genet 45:1249–1254

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCord JM (1976) Iron- and manganese-containing superoxide dismutases: structure, distribution, and evolutionary relationships. Adv Exp Med Biol 74:540–550

    PubMed  CAS  Google Scholar 

  • McCord JM, Edeas MA (2005) SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed Pharmacother 59:139–142

    PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Mecocci P, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751

    PubMed  CAS  Google Scholar 

  • Mitrovic B, Ignarro LJ, Montestruque S, Smoll A, Merrill JE (1994) Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro. Neuroscience 61:575–585

    PubMed  CAS  Google Scholar 

  • Moosmann B, Behl C (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs 11:1407–1435

    PubMed  CAS  Google Scholar 

  • Morrow JD, Chen Y, Brame CJ, Yang J, Sanchez SC, Xu J, Zackert WE, Awad JA, Roberts LJ (1999) The isoprostanes: unique prostaglandin-like products of free-radical-initiated lipid peroxidation. Drug Metab Rev 31:117–139

    PubMed  CAS  Google Scholar 

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, Oxidative Stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nakaso K, Nakamura C, Sato H, Imamura K, Takeshima T, Nakashima K (2006) Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins. Biochem Biophys Res Commun 339:915–922

    PubMed  CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    PubMed  CAS  Google Scholar 

  • Nguyen T, Yang CS, Pickett CB (2004) The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 37:433–441

    PubMed  CAS  Google Scholar 

  • Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Bruck W, Bishop D, Misgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17:495–499

    PubMed  CAS  Google Scholar 

  • Nunomura A, Honda K, Takeda A, Hirai K, Zhu X, Smith MA, Perry G (2006) Oxidative damage to RNA in neurodegenerative diseases. J Biomed Biotechnol 2006:82323

    PubMed  PubMed Central  Google Scholar 

  • Pareek TK, Belkadi A, Kesavapany S, Zaremba A, Loh SL, Bai L, Cohen ML, Meyer C, Liby KT, Miller RH, Sporn MB, Letterio JJ (2011) Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis. Sci Rep 1:201

    PubMed  PubMed Central  Google Scholar 

  • Parker WD Jr, Parks JK, Swerdlow RH (2008) Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res 1189:215–218

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perez-Severiano F, Santamaria A, Pedraza-Chaverri J, Medina-Campos ON, Rios C, Segovia J (2004) Increased formation of reactive oxygen species, but no changes in glutathione peroxidase activity, in striata of mice transgenic for the Huntington’s disease mutation. Neurochem Res 29:729–733

    PubMed  CAS  Google Scholar 

  • Perez-Severiano F, Montes S, Geronimo-Olvera C, Segovia J (2013) Study of oxidative damage and antioxidant systems in two Huntington’s disease rodent models. Methods Mol Biol 1010:177–200

    PubMed  CAS  Google Scholar 

  • Przedborski S, Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7:685–693

    PubMed  CAS  Google Scholar 

  • Qi X, Lewin AS, Sun L, Hauswirth WW, Guy J (2006) Mitochondrial protein nitration primes neurodegeneration in experimental autoimmune encephalomyelitis. J Biol Chem 281:31950–31962

    PubMed  CAS  Google Scholar 

  • Ramsey CP, Glass CA, Montgomery MB, Lindl KA, Ritson GP, Chia LA, Hamilton RL, Chu CT, Jordan-Sciutto KL (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rhee SG, Chae HZ, Kim K (2005) Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med 38:1543–1552

    PubMed  CAS  Google Scholar 

  • Riedl AG, Watts PM, Brown CT, Jenner P (1999) P450 and heme oxygenase enzymes in the basal ganglia and their roles in Parkinson’s disease. Adv Neurol 80:271–286

    PubMed  CAS  Google Scholar 

  • Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583–650

    PubMed  CAS  Google Scholar 

  • Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A (2006) Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem 281:14841–14851

    PubMed  CAS  Google Scholar 

  • Santamaria A, Perez-Severiano F, Rodriguez-Martinez E, Maldonado PD, Pedraza-Chaverri J, Rios C, Segovia J (2001) Comparative analysis of superoxide dismutase activity between acute pharmacological models and a transgenic mouse model of Huntington’s disease. Neurochem Res 26:419–424

    PubMed  CAS  Google Scholar 

  • Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, Zeng W, Ryan S, Yamamoto M, Lukashev M, Rhodes KJ (2012) Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther 341:274–284

    PubMed  CAS  Google Scholar 

  • Scherzinger E, Lurz R, Turmaine M, Mangiarini L, Hollenbach B, Hasenbank R, Bates GP, Davies SW, Lehrach H, Wanker EE (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558

    PubMed  CAS  Google Scholar 

  • Schimrigk S, Brune N, Hellwig K, Lukas C, Bellenberg B, Rieks M, Hoffmann V, Pohlau D, Przuntek H (2006) Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurol 13:604–610

    PubMed  CAS  Google Scholar 

  • Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37:1995–2011

    PubMed  CAS  Google Scholar 

  • Schreibelt G, Musters RJ, Reijerkerk A, de Groot LR, Van Der Pol SM, Hendrikx EM, Dopp ED, Dijkstra CD, Drukarch B, De Vries HE (2006) Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity. J Immunol 177:2630–2637

    PubMed  CAS  Google Scholar 

  • Shcherbatykh I, Carpenter DO (2007) The role of metals in the etiology of Alzheimer’s disease. J Alzheimers Dis 11:191–205

    PubMed  CAS  Google Scholar 

  • Shih AY, Imbeault S, Barakauskas V, Erb H, Jiang L, Li P, Murphy TH (2005a) Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem 280:22925–22936

    PubMed  CAS  Google Scholar 

  • Shih AY, Li P, Murphy TH (2005b) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25:10321–10335

    PubMed  CAS  Google Scholar 

  • Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, Smith MA, Fujimoto S (2000) Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun 273:5–9

    PubMed  CAS  Google Scholar 

  • Siddiqui A, Rivera-Sanchez S, Castro MR, cevedo-Torres K, Rane A, Torres-Ramos CA, Nicholls DG, Andersen JK, yala-Torres S (2012) Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington’s disease. Free Radic Biol Med 53:1478–1488

    PubMed  CAS  Google Scholar 

  • Smith MA, Harris PLR, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17:2653–2657

    PubMed  CAS  Google Scholar 

  • Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    PubMed  CAS  Google Scholar 

  • Sofic E, Sapcanin A, Tahirovic I, Gavrankapetanovic I, Jellinger K, Reynolds GP, Tatschner T, Riederer P (2006) Antioxidant capacity in postmortem brain tissues of Parkinson’s and Alzheimer’s diseases. J Neural Transm Suppl 71:39-43

  • Spitsin SV, Scott GS, Mikheeva T, Zborek A, Kean RB, Brimer CM, Koprowski H, Hooper DC (2002) Comparison of uric acid and ascorbic acid in protection against EAE. Free Radic Biol Med 33:1363–1371

    PubMed  CAS  Google Scholar 

  • Springer W, Kahle PJ (2006) Mechanisms and models of alpha-synuclein-related neurodegeneration. Curr Neurol Neurosci Rep 6:432–436

    PubMed  CAS  Google Scholar 

  • Stack C, Ho D, Wille E, Calingasan NY, Williams C, Liby K, Sporn M, Dumont M, Beal MF (2010) Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radic Biol Med 49:147–158

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, Darlington LG (2005) Tryptophan metabolism and oxidative stress in patients with Huntington’s disease. J Neurochem 93:611–623

    PubMed  CAS  Google Scholar 

  • Sultana R, Perluigi M, Butterfield DA (2006) Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 8:2021–2037

    PubMed  CAS  Google Scholar 

  • Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022

    PubMed  CAS  Google Scholar 

  • Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103:17–37

    PubMed  CAS  Google Scholar 

  • Valencia A, Sapp E, Kimm JS, McClory H, Reeves PB, Alexander J, Ansong KA, Masso N, Frosch MP, Kegel KB, Li X, DiFiglia M (2013) Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington’s disease. Hum Mol Genet 22:1112–1131

    PubMed  CAS  PubMed Central  Google Scholar 

  • Valente EM, bou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del TD, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    PubMed  CAS  Google Scholar 

  • Van der Goes A, Wouters D, Van Der Pol SM, Huizinga R, Ronken E, Adamson P, Greenwood J, Dijkstra CD, De Vries HE (2001) Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB J 15:1852–1854

    PubMed  Google Scholar 

  • van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, Van der Valk P, De Vries HE (2008) Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med 45:1729–1737

    PubMed  Google Scholar 

  • van Horssen J, Drexhage JA, Flor T, Gerritsen W, Van der Valk P, De Vries HE (2010) Nrf2 and DJ1 are consistently upregulated in inflammatory multiple sclerosis lesions. Free Radic Biol Med 49:1283–1289

    PubMed  Google Scholar 

  • van Horssen J, Witte ME, Schreibelt G, De Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta 1812:141–150

    PubMed  Google Scholar 

  • Van Muiswinkel FL, Veerhuis R, Eikelenboom P (1996) Amyloid beta protein primes cultured rat microglial cells for an enhanced phorbol 12-myristate 13-acetate-induced respiratory burst activity. J Neurochem 66:2468–2476

    PubMed  Google Scholar 

  • Van Muiswinkel FL, Raupp SF, de Vos NM, Smits HA, Verhoef J, Eikelenboom P, Nottet HS (1999) The amino-terminus of the amyloid-beta protein is critical for the cellular binding and consequent activation of the respiratory burst of human macrophages. J Neuroimmunol 96:121–130

    PubMed  Google Scholar 

  • Van Muiswinkel FL, de Vos RA, Bol JG, Andringa G, Jansen Steur EN, Ross D, Siegel D, Drukarch B (2004) Expression of NAD(P)H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiol Aging 25:1253–1262

    PubMed  Google Scholar 

  • Volkel W, Sicilia T, Pahler A, Gsell W, Tatschner T, Jellinger K, Leblhuber F, Riederer P, Lutz WK, Gotz ME (2006) Increased brain levels of 4-hydroxy-2-nonenal glutathione conjugates in severe Alzheimer’s disease. Neurochem Int 48:679–686

    PubMed  Google Scholar 

  • von Otter M, Landgren S, Nilsson S, Celojevic D, Bergstrom P, Hakansson A, Nissbrandt H, Drozdzik M, Bialecka M, Kurzawski M, Blennow K, Nilsson M, Hammarsten O, Zetterberg H (2010a) Association of Nrf2-encoding NFE2L2 haplotypes with Parkinson’s disease. BMC Med Genet 11:36

    Google Scholar 

  • von Otter M, Landgren S, Nilsson S, Zetterberg M, Celojevic D, Bergstrom P, Minthon L, Bogdanovic N, Andreasen N, Gustafson DR, Skoog I, Wallin A, Tasa G, Blennow K, Nilsson M, Hammarsten O, Zetterberg H (2010b) Nrf2-encoding NFE2L2 haplotypes influence disease progression but not risk in Alzheimer’s disease and age-related cataract. Mech Ageing Dev 131:105–110

    Google Scholar 

  • Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG (2003) Different faces of the heme–heme oxygenase system in inflammation. Pharmacol Rev 55:551–571

    PubMed  CAS  Google Scholar 

  • Walker FO (2007) Huntington’s Disease. Semin Neurol 27:143–150

    PubMed  Google Scholar 

  • Wallace MN, Geddes JG, Farquhar DA, Masson MR (1997) Nitric oxide synthase in reactive astrocytes adjacent to beta-amyloid plaques. Exp Neurol 144:266–272

    PubMed  CAS  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    PubMed  CAS  Google Scholar 

  • Wang CX, Shuaib A (2007) Neuroprotective effects of free radical scavengers in stroke. Drugs Aging 24:537–546

    PubMed  CAS  Google Scholar 

  • Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer’s disease. J Neurochem 93:953–962

    PubMed  CAS  Google Scholar 

  • Williamson TP, Amirahmadi S, Joshi G, Kaludov NK, Martinov MN, Johnson DA, Johnson JA (2012) Discovery of potent, novel Nrf2 inducers via quantum modeling, virtual screening, and in vitro experimental validation. Chem Biol Drug Des 80:810–820

    PubMed  CAS  PubMed Central  Google Scholar 

  • Witte ME, Bo L, Rodenburg RJ, Belien JA, Musters R, Hazes T, Wintjes LT, Smeitink JA, Geurts JJ, De Vries HE, Van der Valk J, van Horssen J (2009) Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 219:193–204

    PubMed  Google Scholar 

  • Witte ME, Geurts JJ, De Vries HE, Van der Valk J, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10:411–418

    PubMed  CAS  Google Scholar 

  • Wruck CJ, Claussen M, Fuhrmann G, Romer L, Schulz A, Pufe T, Waetzig V, Peipp M, Herdegen T, Gotz ME (2007) Luteolin protects rat PC12 and C6 cells against MPP + induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway. J Neural Transm Suppl 72:57-67

  • yala-Pena S (2013) Role of oxidative DNA damage in mitochondrial dysfunction and Huntington’s disease pathogenesis. Free Radic Biol Med 62:102–110

    Google Scholar 

  • Yasuhara T, Hara K, Sethi KD, Morgan JC, Borlongan CV (2007) Increased 8-OHdG levels in the urine, serum, and substantia nigra of hemiparkinsonian rats. Brain Res 1133:49–52

    PubMed  CAS  Google Scholar 

  • Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao J, Kobori N, Aronowski J, Dash PK (2006) Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett 393:108–112

    PubMed  CAS  Google Scholar 

  • Zhao J, Moore AN, Redell JB, Dash PK (2007) Enhancing expression of Nrf2-driven genes protects the blood brain barrier after brain injury. J Neurosci 27:10240–10248

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from ‘Stichting Vrienden MS Research,’ The Netherlands, project numbers MS 05-358c (J. van Horssen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack van Horssen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J.L., Wilhelmus, M.M.M., de Vries, H.E. et al. Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art and clinical perspectives in neurodegenerative diseases. Arch Toxicol 88, 1773–1786 (2014). https://doi.org/10.1007/s00204-014-1338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1338-z

Keywords

Navigation