Skip to main content
Log in

The risky cocktail: what combination effects can we expect between ecstasy and other amphetamines?

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The recreational and illicit use of amphetaminic designer compounds, specially 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy), is of concern worldwide. Such psychostimulating drugs are frequently present as complex mixtures in ‘rave’ pills, making concomitant polysubstance use a common trend. However, the understanding of possible combination effects with these substances is still scarce. The present study was aimed at predicting the cytotoxic effects of mixtures of four amphetaminic derivatives: MDMA, methamphetamine, 4-methylthioamphetamine and d-amphetamine in a human hepatoma cell line. Concentration–response curves for all single-mixture components were recorded by the MTT assay. Data obtained for individual agents were then used to compute the additivity expectations for mixtures of definite composition, using the pharmacological models of concentration addition (CA) and independent action. By comparing the predicted calculations with the experimentally observed effects, we concluded that CA accurately predicts the combination of amphetamines, which act together to generate additive effects over a large range of concentrations. Notably, we observed substantial mixture effects even when each drug was present at low concentrations, which individually produced unnoticeable effects. Nonetheless, for all tested mixtures, a small deviation from additivity was observed towards higher concentrations, particularly at high effect levels. A possible metabolic interaction, which could explain such deviation, was investigated, and it was observed that at higher mixture concentrations increased MDMA metabolism could be contributing to divergences from additivity. In conclusion, the present work clearly demonstrates that potentially harmful interactions among amphetaminic drugs are expected when these drugs are taken concomitantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altenburger R, Backhaus T, Boedeker W, Faust M, Scholze M, Grimme LH (2000) Predictability of the toxicity of multiple chemical mixtures to Vibrio fisheri: mixtures composed of similarly acting chemicals. Environ Toxicol Chem 19(9):2341–2347

    CAS  Google Scholar 

  • Backhaus T, Altenburger R, Boedeker W, Faust M, Scholze M, Grimme LH (2000a) Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeri. Environ Toxicol Chem 19(9):2348–2356

    CAS  Google Scholar 

  • Backhaus T, Scholze M, Grimme LH (2000b) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49(1–2):49–61

    Article  PubMed  CAS  Google Scholar 

  • Barbosa DJ, Capela JP, Oliveira JM et al (2012) Pro-oxidant effects of Ecstasy and its metabolites in mouse brain synaptosomes. Br J Pharmacol 165(4b):1017–1033. doi:10.1111/j.1476-5381.2011.01453.x

    Article  PubMed  Google Scholar 

  • Barrett SP, Darredeau C, Pihl RO (2006) Patterns of simultaneous polysubstance use in drug using university students. Hum Psychopharmacol Clin 21(4):255–263. doi:10.1002/Hup.766

    Article  Google Scholar 

  • Becker J, Neis P, Rohrich J, Zorntlein S (2003) A fatal paramethoxymethamphetamine intoxication. Leg Med (Tokyo) 5(Suppl 1):S138–S141

    Article  Google Scholar 

  • Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26:585–615

    Article  CAS  Google Scholar 

  • Camilleri AM, Caldicott D (2005) Underground pill testing, down under. Forensic Sci Int 151(1):53–58. doi:10.1016/J.Forsciint.2004.07.004

    Article  PubMed  Google Scholar 

  • Capela JP, Meisel A, Abreu AR et al (2006) Neurotoxicity of ecstasy metabolites in rat cortical neurons, and influence of hyperthermia. J Pharmacol Exp Ther 316(1):53–61. doi:10.1124/jpet.105.092577

    Article  PubMed  CAS  Google Scholar 

  • Carmo H, Hengstler JG, de Boer D et al (2004) Comparative metabolism of the designer drug 4-methylthioamphetamine by hepatocytes from man, monkey, dog, rabbit, rat and mouse. Naunyn Schmiedebergs Arch Pharmacol 369(2):198–205. doi:10.1007/S00210-003-0850-0

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Hawksworth G, Milhazes N et al (2002) Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells. Arch Toxicol 76(10):581–588. doi:10.1007/S00204-002-0381-3

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Remiao F, Milhazes N et al (2004a) The toxicity of N-methyl-alpha-methyldopamine to freshly isolated rat hepatocytes is prevented by ascorbic acid and N-acetylcysteine. Toxicology 200(2–3):193–203. doi:10.1016/j.tox.2004.03.016

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Remiao F, Milhazes N et al (2004b) Metabolism is required for the expression of ecstasy-induced cardiotoxicity in vitro. Chem Res Toxicol 17(5):623–632. doi:10.1021/tx049960f

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Pontes H, Remiao F, Bastos ML, Carvalho F (2010) Mechanisms underlying the hepatotoxic effects of ecstasy. Curr Pharm Biotechnol 11(5):476–495

    Article  PubMed  CAS  Google Scholar 

  • Carvalho M, Carmo H, Costa VM et al (2012) Toxicity of amphetamines: an update. Arch Toxicol. doi:10.1007/s00204-012-0815-5

    Google Scholar 

  • Chen Q, Cederbaum AI (1997) Menadione cytotoxicity to Hep G2 cells and protection by activation of nuclear factor-kappaB. Mol Pharmacol 52(4):648–657

    PubMed  CAS  Google Scholar 

  • Clemens KJ, Cornish JL, Li KM, Hunt GE, McGregor IS (2005) MDMA (‘Ecstasy’) and methamphetamine combined: order of administration influences hyperthermic and long-term adverse effects in female rats. Neuropharmacology 49(2):195–207. doi:10.1016/j.neuropharm.2005.03.002

    Article  PubMed  CAS  Google Scholar 

  • Cloonan SM, Keating JJ, Corrigan D et al (2010) Synthesis and in vitro toxicity of 4-MTA, its characteristic clandestine synthesis byproducts and related sulfur substituted alpha-alkylthioamphetamines. Bioorg Med Chem 18(11):4009–4031. doi:10.1016/J.Bmc.2010.04.022

    Article  PubMed  CAS  Google Scholar 

  • Custodio JBA, Santos MS, Goncalves DIR et al (2010) Comparative effects of 3,4-methylenedioxymethamphetamine and 4-methylthioamphetamine on rat liver mitochondrial function. Toxicology 270(2–3):99–105. doi:10.1016/J.Tox.2010.01.022

    Article  PubMed  CAS  Google Scholar 

  • da Silva DG, de Pinho PG, Pontes H et al (2010) Gas chromatography-ion trap mass spectrometry method for the simultaneous measurement of MDMA (ecstasy) and its metabolites, MDA, HMA, and HMMA in plasma and urine. J Chromatogr, B: Anal Technol Biomed Life Sci 878(9–10):815–822. doi:10.1016/j.jchromb.2010.01.042

    Google Scholar 

  • Darroudi F, Meijers CM, Hadjidekova V, Natarajan AT (1996) Detection of aneugenic and clastogenic potential of X-rays, directly and indirectly acting chemicals in human hepatoma (Hep G2) and peripheral blood lymphocytes, using the micronucleus assay and fluorescent in situ hybridization with a DNA centromeric probe. Mutagenesis 11(5):425–433

    Article  PubMed  CAS  Google Scholar 

  • de la Torre R, Farre M, Navarro M, Pacifici R, Zuccaro P, Pichini S (2004) Clinical pharmacokinetics of amfetamine and related substances—monitoring in conventional and non-conventional matrices. Clin Pharmacokinet 43(3):157–185

    Article  PubMed  Google Scholar 

  • De Letter EA, Coopman VAE, Cordonnier JACM, Piette MHA (2001) One fatal and seven non-fatal cases of 4-methylthioamphetamine (4-MTA) intoxication: clinico-pathological findings. Int J Legal Med 114(6):352–356

    Article  PubMed  Google Scholar 

  • De Letter EA, Bouche MP, Van Bocxlaer JF, Lambert WE, Piette MH (2004) Interpretation of a 3,4-methylenedioxymethamphetamine (MDMA) blood level: discussion by means of a distribution study in two fatalities. Forensic Sci Int 141(2–3):85–90. doi:10.1016/j.forsciint.2003.12.015

    Article  PubMed  Google Scholar 

  • De Letter EA, Piette MHA, Lambert WE, Cordonnier JACM (2006) Amphetamines as potential inducers of fatalities: a review in the district of Ghent from 1976–2004. Med Sci Law 46(1):37–65

    Article  PubMed  Google Scholar 

  • Donato MT, Lahoz A, Castell JV, Gomez-Lechon MJ (2008) Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab 9(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • Doostdar H, Grant MH, Melvin WT, Wolf CR, Burke MD (1993) The effects of inducing agents on cytochrome P450 and UDP-glucuronyltransferase activities in human HEPG2 hepatoma cells. Biochem Pharmacol 46(4):629–635

    Article  PubMed  CAS  Google Scholar 

  • Drescher K, Boedeker W (1995) Assessment of the combined effects of substances—the relationship between concentration addition and independent action. Biometrics 51(2):716–730

    Article  Google Scholar 

  • Elliott SP (2000) Fatal poisoning with a new phenylethylamine: 4-methylthioamphetamine (4-MTA). J Anal Toxicol 24(2):85–89

    PubMed  CAS  Google Scholar 

  • Garcia-Repetto R, Moreno E, Soriano T, Jurado C, Gimenez MP, Menendez M (2003) Tissue concentrations of MDMA and its metabolite MDA in three fatal cases of overdose. Forensic Sci Int 135(2):110–114. doi:10.1016/S0379-0738(03)00179-8

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Williams RJ, Rattray M (2006) Serotonin transporter expression is not sufficient to confer cytotoxicity to 3,4-methylenedioxymethamphetamine (MDMA) in vitro. J Psychopharmacol 20(2):257–263. doi:10.1177/0269881106063273

    Article  PubMed  CAS  Google Scholar 

  • Jimenez A, Jorda EG, Verdaguer E et al (2004) Neurotoxicity of amphetamine derivatives is mediated by caspase pathway activation in rat cerebellar granule cells. Toxicol Appl Pharm 196(2):223–234. doi:10.1016/J.Taap.2003.12.017

    Article  CAS  Google Scholar 

  • Jones AL, Simpson KJ (1999) Review article: mechanisms and management of hepatotoxicity in ecstasy (MDMA) and amphetamine intoxications. Aliment Pharmacol Ther 13(2):129–133

    Article  PubMed  CAS  Google Scholar 

  • Knasmuller S, Mersch-Sundermann V, Kevekordes S et al (2004) Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 198(1–3):315–328. doi:10.1016/j.tox.2004.02.008

    Article  PubMed  CAS  Google Scholar 

  • Loewe S, Muchnik H (1926) Effect of combinations: mathematical basis of the problem. Arch Exp Pathol Pharmakol 114:313–326

    Article  CAS  Google Scholar 

  • Milroy CM (1999) Ten years of ‘ecstasy’. J R Soc Med 92(2):68–72

    PubMed  CAS  Google Scholar 

  • Milroy CM, Clark JC, Forrest AR (1996) Pathology of deaths associated with “ecstasy” and “eve” misuse. J Clin Pathol 49(2):149–153

    Article  PubMed  CAS  Google Scholar 

  • Mohamed WMY, Ben Hamida S, Cassel JC, de Vasconcelos AP, Jones BC (2011) MDMA: interactions with other psychoactive drugs. Pharmacol Biochem Behav 99(4):759–774. doi:10.1016/J.Pbb.2011.06.032

    Article  PubMed  CAS  Google Scholar 

  • Morefield KM, Keane M, Felgate P, White JM, Irvine RJ (2011) Pill content, dose and resulting plasma concentrations of 3,4-methylendioxymethamphetamine (MDMA) in recreational ‘ecstasy’ users. Addiction 106(7):1293–1300. doi:10.1111/J.1360-0443.2011.03399.X

    Article  PubMed  Google Scholar 

  • Pavlaki MD, Pereira R, Loureiro S, Soares AMVM (2011) Effects of binary mixtures on the life traits of Daphnia magna. Ecotoxicol Environ Saf 74(1):99–110. doi:10.1016/J.Ecoenv.2010.07.010

    Article  PubMed  CAS  Google Scholar 

  • Pavlic M, Schubert B, Libiseller K, Oberacher H (2010) Comprehensive identification of active compounds in tablets by flow-injection data-dependent tandem mass spectrometry combined with library search. Forensic Sci Int 197(1–3):40–47. doi:10.1016/J.Forsciint.2009.12.019

    Article  PubMed  CAS  Google Scholar 

  • Payne J, Rajapakse N, Wilkins M, Kortenkamp A (2000) Prediction and assessment of the effects of mixtures of four xenoestrogens. Environ Health Perspect 108(10):983–987

    Article  PubMed  CAS  Google Scholar 

  • Pontes H, Sousa C, Silva R et al (2008) Synergistic toxicity of ethanol and MDMA towards primary cultured rat hepatocytes. Toxicology 254(1–2):42–50. doi:10.1016/j.tox.2008.09.009

    Article  PubMed  CAS  Google Scholar 

  • Pontes H, de Pinho PG, Fernandes E et al (2010) Metabolic interactions between ethanol and MDMA in primary cultured rat hepatocytes. Toxicology 270(2–3):150–157. doi:10.1016/J.Tox.2010.02.010

    Article  PubMed  CAS  Google Scholar 

  • Rajapakse N, Ong D, Kortenkamp A (2001) Defining the impact of weakly estrogenic chemicals on the action of steroidal estrogens. Toxicol Sci Off J Soc Toxicol 60(2):296–304

    CAS  Google Scholar 

  • Rajapakse N, Silva E, Kortenkamp A (2002) Combining xenoestrogens at levels below individual No-observed-effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect 110(9):917–921

    Article  PubMed  CAS  Google Scholar 

  • Ripp SL, Falkner KC, Pendleton ML, Tamasi V, Prough RA (2003) Regulation of CYP2C11 by dehydroepiandrosterone and peroxisome proliferators: identification of the negative regulatory region of the gene. Mol Pharmacol 64(1):113–122. doi:10.1124/mol.64.1.113

    Article  PubMed  CAS  Google Scholar 

  • Scholze M, Boedeker W, Faust M, Backhaus T, Altenburger R, Grimme LH (2001) A general best-fit method for concentration-response curves and the estimation of low-effect concentrations. Environ Toxicol Chem 20(2):448–457

    PubMed  CAS  Google Scholar 

  • Shenouda SK, Varner KJ, Carvalho F, Lucchesi PA (2009) Metabolites of MDMA induce oxidative stress and contractile dysfunction in adult rat left ventricular myocytes. Cardiovasc Toxicol 9(1):30–38. doi:10.1007/S12012-009-9034-6

    Article  PubMed  CAS  Google Scholar 

  • Sherlock K, Wolff K, Hay AWM, Conner M (1999) Analysis of illicit ecstasy tablets: implications for clinical management in the accident and emergency department. J Accid Emerg Med 16(3):194–197

    Article  PubMed  CAS  Google Scholar 

  • Silva E, Rajapakse N, Kortenkamp A (2002) Something from “nothing”—eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environ Sci Technol 36(8):1751–1756. doi:10.1021/Es0101227

    Article  PubMed  CAS  Google Scholar 

  • Silva E, Rajapakse N, Scholze M, Backhaus T, Ermler S, Kortenkamp A (2011a) Joint effects of heterogeneous estrogenic chemicals in the E-screen-exploring the applicability of concentration addition. Toxicol Sci 122(2):383–394. doi:10.1093/Toxsci/Kfr103

    Article  PubMed  CAS  Google Scholar 

  • Silva R, Carmo H, Dinis-Oliveira R et al (2011b) In vitro study of P-glycoprotein induction as an antidotal pathway to prevent cytotoxicity in Caco-2 cells. Arch Toxicol 85(4):315–326. doi:10.1007/S00204-010-0587-8

    Article  PubMed  CAS  Google Scholar 

  • Simantov R, Tauber M (1997) The abused drug MDMA (Ecstasy) induces programmed death of human serotonergic cells. FASEB J Off Publ Fed Am Soc Exp Biol 11(2):141–146

    CAS  Google Scholar 

  • Stumm G, Schlegel J, Schafer T et al (1999a) Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. FASEB J Off Publ Fed Am Soc Exp Biol 13(9):1065–1072

    CAS  Google Scholar 

  • Stumm G, Schlegel J, Schafer T et al (1999b) Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. FASEB J 13(9):1065–1072

    PubMed  CAS  Google Scholar 

  • Tang RX, Kong FY, Fan BF et al (2012) HBx activates FasL and mediates HepG2 cell apoptosis through MLK3-MKK7-JNKs signal module. World J Gastroenterol 18(13):1485–1495. doi:10.3748/Wjg.V18.I13.1485

    Article  PubMed  CAS  Google Scholar 

  • Tanner-Smith EE (2006) Pharmacological content of tablets sold as “ecstasy”: results from an online testing service. Drug Alcohol Depend 83(3):247–254. doi:10.1016/J.Drugalcdep.2005.11.016

    Article  PubMed  CAS  Google Scholar 

  • Teng SF, Wu SC, Liu CR, Li JH, Chien CS (2006) Characteristics and trends of 3,4-methylenedioxymethamphetamine (MDMA) tablets found in Taiwan from 2002 to February 2005. Forensic Sci Int 161(2–3):202–208. doi:10.1016/J.Forsciint.2006.03.035

    Article  PubMed  CAS  Google Scholar 

  • Verschraagen M, Maes A, Ruiter B, Bosman IJ, Smink BE, Lusthof KJ (2007) Post-mortem cases involving amphetamine-based drugs in the Netherlands—comparison with driving under the influence cases. Forensic Sci Int 170(2–3):163–170. doi:10.1016/J.Forsciint.2007.03.030

    Article  PubMed  CAS  Google Scholar 

  • Walubo A, Seger D (1999) Fatal multi-organ failure after suicidal overdose with MDMA, ‘Ecstasy’: case report and review of the literature. Hum Exp Toxicol 18(2):119–125

    Article  PubMed  CAS  Google Scholar 

  • Wu LT, Schlenger WE, Galvin DM (2006) Concurrent use of methamphetamine, MDMA, LSD, ketamine, GHB, and flunitrazepam among American youths. Drug Alcohol Depend 84(1):102–113. doi:10.1016/J.Drugalcdep.2006.01.002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to kindly thank Renata Silva (Faculty of Pharmacy, University of Oporto, Portugal) and Paula Guedes (Faculty of Pharmacy, University of Oporto, Portugal) for technical support with cell culture and GC–MS techniques, respectively. Félix Carvalho (Faculty of Pharmacy, University of Oporto, Portugal), Martin Scholze and Andreas Kortenkamp (The Institute for Environment, University of Brunel, London) are also greatly acknowledged for their criticisms and suggestions. This work was supported by the Portuguese Research Council Fundação para a Ciência e para a Tecnologia (FCT) [SFRH/BD/45617/2008 to D.D.S.] and cofounded by the European Community financial support Programa Operacional Factores de Competitividade do Quadro de Referência Estratégico Nacional (QREN POFC).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabete Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias da Silva, D., Carmo, H. & Silva, E. The risky cocktail: what combination effects can we expect between ecstasy and other amphetamines?. Arch Toxicol 87, 111–122 (2013). https://doi.org/10.1007/s00204-012-0929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0929-9

Keywords

Navigation