Skip to main content
Log in

Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Flavonoids present in many herbal edibles possess a remarkable spectrum of biochemical and pharmacological actions and they are assumed to exert beneficial effects to human health. Although the precise biological mechanisms of their action has not been elucidated yet many of the protective properties of flavonoids are attributed to their antioxidative activity since oxidative stress is regarded as a main factor in the pathophysiology of various diseases and ageing. Oxidative stress results from excessive generation of reactive oxygen species (ROS) or diminished antioxidative defence and thus antioxidants are able to counteract such situations. We used the multicellular model organism Caenorhabditis elegans that is conserved in molecular and cellular pathways to mammals to examine the effects of the flavonoids kaempferol and fisetin with respect to their protective action in individual living worms. Both flavonoids increased the survival of C. elegans, reduced the intracellular ROS accumulation at lethal thermal stress, and diminished the extent of induced oxidative stress with kaempferol having a stronger impact. Kaempferol but not fisetin attenuated the accumulation of the ageing marker lipofuscin suggesting a life prolonging activity of this flavonoid. In addition to these effects that may be attributed to their antioxidative potential kaempferol and fisetin caused a translocation of the C. elegans FoxO transcription factor DAF-16 from the cytosol to the nucleus indicating a modulatory influence of both flavonoids on signalling cascade(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177

    Article  PubMed  CAS  Google Scholar 

  • Brown MK, Evans JL, Luo Y (2006) Beneficial effects of natural antioxidants EGCG and alpha-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav 85:620–628

    Article  PubMed  CAS  Google Scholar 

  • Bruskov VI, Malakhova LV, Masalimov ZK, Chernikov AV (2002) Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acids Res 30:1354–1363

    Article  PubMed  CAS  Google Scholar 

  • Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE (1998) Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat Struct Biol 5:400–406

    Article  PubMed  CAS  Google Scholar 

  • Colton C, Zahari S (1997) Role of free radicals in alcohol-induced tissue injuriy. In: Baskin SI, Salem H (eds) Oxidants, antioxidants and free radicals. Taylor and Francis, Washington and London, pp 259–271

    Google Scholar 

  • Cross AR, Jones OT (1991) Enzymic mechanisms of superoxide production. Biochim Biophys Acta 1057:281–298

    Article  PubMed  CAS  Google Scholar 

  • de Grey AD (1997) A proposed refinement of the mitochondrial free radical theory of aging. Bioessays 19:161–166

    Article  PubMed  Google Scholar 

  • de Grey AD (2000) The reductive hotspot hypothesis: an update. Arch Biochem Biophys 373:295–301

    Article  PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  • Forsberg L, de Faire U, Morgenstern R (2001) Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys 389:84–93

    Article  PubMed  CAS  Google Scholar 

  • Gami MS, Wolkow CA (2006) Studies of Caenorhabditis elegans DAF-2/insulin signaling reveal targets for pharmacological manipulation of lifespan. Aging Cell 5:31–37

    Article  PubMed  CAS  Google Scholar 

  • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161:1101–1112

    PubMed  CAS  Google Scholar 

  • Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4:127–137

    Article  PubMed  CAS  Google Scholar 

  • Gill MS (2006) Endocrine targets for pharmacological intervention in aging in Caenorhabditis elegans. Aging Cell 5:23–30

    Article  PubMed  CAS  Google Scholar 

  • Gill MS, Olsen A, Sampayo JN, Lithgow GJ (2003) An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic Biol Med 35:558–565

    Article  PubMed  CAS  Google Scholar 

  • Griffiths HR (2005) ROS as signalling molecules in T cells-evidence for abnormal redox signalling in the autoimmune disease, rheumatoid arthritis. Redox Rep 10:273–280

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Zepeda A, Santell R, Wu Z, Brown M, Wu Y, Khan I, Link CD, Zhao B, Luo Y (2005) Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neurosci 6:54

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann NY Acad Sci 899:136–147

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Harman D (1957) Aging: a theory based on free radical and radiation chemistry. J Gerontol 2:298–300

    Google Scholar 

  • Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    Article  PubMed  CAS  Google Scholar 

  • Henderson ST, Bonafe M, Johnson TE (2006) daf-16 protects the nematode Caenorhabditis elegans during food deprivation. J Gerontol A Biol Sci Med Sci 61:444–460

    PubMed  Google Scholar 

  • Johnson TE, Henderson S, Murakami S, de Castro E, de Castro SH, Cypser J, Rikke B, Tedesco P, Link C (2002) Longevity genes in the nematode Caenorhabditis elegans also mediate increased resistance to stress and prevent disease. J Inherit Metab Dis 25:197–206

    Article  PubMed  CAS  Google Scholar 

  • Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–399

    Article  PubMed  CAS  Google Scholar 

  • Kampkotter A, Pielarski T, Rohrig R, Timpel C, Chovolou Y, Watjen W, Kahl R (2007a) The Ginkgo biloba extract EGb761 reduces stress sensitivity, ROS accumulation and expression of catalase and glutathione S-transferase 4 in Caenorhabditis elegans. Pharmacol Res 55:139–147

    Article  PubMed  CAS  Google Scholar 

  • Kampkotter A, Gombitang-Nkwonkam C, Zurawski RF, Timpel C, Chovolou Y, Watjen W, Kahl R (2007b) Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 234:113–123

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  PubMed  CAS  Google Scholar 

  • Kovacic P, Jacintho JD (2001) Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr Med Chem 8:773–796

    PubMed  CAS  Google Scholar 

  • Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125:987–1001

    Article  PubMed  CAS  Google Scholar 

  • Leiers B, Kampkotter A, Grevelding CG, Link CD, Johnson TE, Henkle-Duhrsen K (2003) A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radic Biol Med 34:1405–1415

    Article  PubMed  CAS  Google Scholar 

  • Lewis JA, Fleming JT (1995) Basic culture methods. In: Epstein HF, Shakes DC (eds) Caenorhabditis elegans: modern biological analysis of an organism. Academic, San Diego, pp 4–30

    Google Scholar 

  • Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Oh SW, Tissenbaum HA (2006) Worming pathways to and from DAF-16/FOXO. Exp Gerontol 41:928–934

    Article  PubMed  CAS  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283

    Article  PubMed  CAS  Google Scholar 

  • Noroozi M, Angerson WJ, Lean ME (1998) Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am J Clin Nutr 67:1210–1218

    PubMed  CAS  Google Scholar 

  • Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA (2005) JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA 102:4494–4499

    Article  PubMed  CAS  Google Scholar 

  • Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, Tissenbaum HA (2006) Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 38:251–257

    Article  PubMed  CAS  Google Scholar 

  • Patel M, Day BJ (1999) Metalloporphyrin class of therapeutic catalytic antioxidants. Trends Pharmacol Sci 20:359–364

    Article  PubMed  CAS  Google Scholar 

  • Schaffitzel E, Hertweck M (2006) Recent aging research in Caenorhabditis elegans. Exp Gerontol 41:557–563

    Article  PubMed  CAS  Google Scholar 

  • Schroecksnadel K, Frick B, Winkler C, Fuchs D (2006) Crucial role of interferon-gamma and stimulated macrophages in cardiovascular disease. Curr Vasc Pharmacol 4:205–213

    Article  PubMed  CAS  Google Scholar 

  • Smith JV, Luo Y (2003) Elevation of oxidative free radicals in Alzheimer’s disease models can be attenuated by Ginkgo biloba extract EGb 761. J Alzheimers Dis 5:287–300

    PubMed  Google Scholar 

  • Smith JV, Luo Y (2004) Studies on molecular mechanisms of Ginkgo biloba extract. Appl Microbiol Biotechnol 64:465–472

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC, Melov S (1998) Radicals r’aging. Nat Genet 19:105–106

    Article  PubMed  CAS  Google Scholar 

  • Watjen W, Chovolou Y, Kampkotter A, Kahl (2006) Anti- and prooxidative effects of flavonoids. In: Panglossi HV (eds) Leading edge antioxidant research. Nova Science Publishers, Inc, New York

    Google Scholar 

  • Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, Wolkow CA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5:59–68

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Smith JV, Paramasivam V, Butko P, Khan I, Cypser JR, Luo Y (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorabditis elegans. Cell Mol Biol (Noisy-le-grand) 48:725–731

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Forschungskommission of the Faculty of Medicine of the Heinrich-Heine University Düsseldorf for financial support and Patrick Dingler for technical assistance. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kampkötter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampkötter, A., Gombitang Nkwonkam, C., Zurawski, R.F. et al. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans . Arch Toxicol 81, 849–858 (2007). https://doi.org/10.1007/s00204-007-0215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-007-0215-4

Keywords

Navigation