Skip to main content
Log in

Tryptophan–NAD+ pathway metabolites as putative biomarkers and predictors of peroxisome proliferation

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The present study was designed to provide further information about the relevance of raised urinary levels of N-methylnicotinamide (NMN), and/or its metabolites N-methyl-4-pyridone-3-carboxamide (4PY) and N-methyl-2-pyridone-3-carboxamide (2PY), to peroxisome proliferation by dosing rats with known peroxisome proliferator-activated receptor α (PPARα) ligands [fenofibrate, diethylhexylphthalate (DEHP) and long-chain fatty acids (LCFA)] and other compounds believed to modulate lipid metabolism via PPARα-independent mechanisms (simvastatin, hydrazine and chlorpromazine). Urinary NMN was correlated with standard markers of peroxisome proliferation and serum lipid parameters with the aim of establishing whether urinary NMN could be used as a biomarker for peroxisome proliferation in the rat. Data from this study were also used to validate a previously constructed multivariate statistical model of peroxisome proliferation (PP) in the rat. The predictive model, based on 1H nuclear magnetic resonance (NMR) spectroscopy of urine, uses spectral patterns of NMN, 4PY and other endogenous metabolites to predict hepatocellular peroxisome count. Each treatment induced pharmacological (serum lipid) effects characteristic of their class, but only fenofibrate, DEHP and simvastatin increased peroxisome number and raised urinary NMN, 2PY and 4PY, with simvastatin having only a transient effect on the latter. These compounds also reduced mRNA expression for aminocarboxymuconate-semialdehyde decarboxylase (ACMSDase, EC 4.1.1.45), the enzyme believed to be involved in modulating the flux of tryptophan through this pathway, with decreasing order of potency, fenofibrate (−10.39-fold) >DEHP (−3.09-fold) >simvastatin (−1.84-fold). Of the other treatments, only LCFA influenced mRNA expression of ACMSDase (−3.62-fold reduction) and quinolinate phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) (−2.42-fold) without any change in urinary NMN excretion. Although there were no correlations between urinary NMN concentration and serum lipid parameters, NMN did correlate with peroxisome count (r2=0.63) and acyl-CoA oxidase activity (r2=0.61). These correlations were biased by the large response to fenofibrate compared to the other treatments; nevertheless the data do indicate a relationship between the tryptophan–NAD+ pathway and PPARα-dependent pathways, making this metabolite a potentially useful biomarker to detect PP. In order to strengthen the observed link between the metabolites associated with the tryptophan–NAD+ pathway and more accurately predict PP, other urinary metabolites were included in a predictive statistical model. This statistical model was found to predict the observed PP in 26/27 instances using a pre-determined threshold of 2-fold mean control peroxisome count. The model also predicted a time-dependent increase in peroxisome count for the fenofibrate group, which is important when considering the use of such modelling to predict the onset and progression of PP prior to its observation in samples taken at autopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a,b
Fig. 3a–c
Fig. 4a,b
Fig. 5a–d
Fig. 6a–d
Fig. 7a,b
Fig. 8

Similar content being viewed by others

References

  • Bell FP (1982) Effects of phthalate esters on lipid metabolism in various tissues, cells and organelles in mammals. Environ Health Perspect 45:41–50

    CAS  PubMed  Google Scholar 

  • Bell FP, Hubert EV (1981) Inhibition of LCAT in plasma from man and experimental animals by chlorpromazine. Lipids 16:814–819

    Google Scholar 

  • Castagne I, Fourche J, Jensen J, Neuzil E (1987) The reaction of pyridoxal-5′-phosphate with hydrazino compounds: a spectrophotometric study. Biochem Soc Trans, 14:142–143

    Google Scholar 

  • Cattley RC, Deluca J, Elcombe C, Fenner-Crisp P, Lake BG, Marsman DS, Pastoor TA, Popp JA, Robinson DE, Schwetz B, Tugwood J, Wahli W (1998) Do peroxisome proliferating compounds pose a hepatocarcinogenic hazard to humans? Regul Toxicol Pharmacol 27:47–60

    Article  CAS  Google Scholar 

  • Chao Y, Chen JS, Hunt VM, Kuron GW, Karkas JD, Liou R, Alberts AW (1991) Lowering of plasma cholesterol levels in animals by lovastatin and simvastatin. Eur J Clin Pharmacol 40 [Suppl 1]:S11–S14

  • Chiang M-T, Tsai M-L (1995) Effect of fish oil on plasma lipoproteins, liver glucose-6-phosphate dehydrogenase and glucose-6-phosphatase in rats. Int J Vitam Nutr Res 65:276–282

    CAS  PubMed  Google Scholar 

  • Clark DA, Leeder LG, Foulds EL, Trout DL (1970) Changes in lipids of rat liver after hydrazine injection. Biochem Pharmacol 19:1743–1752

    Article  CAS  PubMed  Google Scholar 

  • Connor SC, Hodson MP, Ringeissen S, Sweatman BC, Waterfield CJ, Haselden JN (2004) Development of a multivariate statistical model to predict peroxisome proliferation in the rat, based on urinary 1H NMR spectral patterns. Biomarkers (in press)

  • Cornish HH (1968) The role of vitamin B6 in the toxicity of hydrazines. Ann N Y Acad Sci 166:126–145

    Google Scholar 

  • Dallongeville J, Bauge E, Tailleux A, Peters JM, Gonzalez FJ, Fruchart J-C, Staels B (2001) Peroxisome proliferator-activated receptor alpha is not rate-limiting for the lipoprotein-lowering action of fish oil. J Biolog Chem 276:4634–4639

    Article  CAS  Google Scholar 

  • De Craemer D, Vamecq J, Roels F, Vallee L, Pauwels M, Van den Branden C (1994) Peroxisomes in liver, heart, and kidney of mice fed a commercial fish oil preparation: original data and review on peroxisomal changes induced by high-fat diets. J Lipid Res 35:1241–1250

    PubMed  Google Scholar 

  • Egashira Y, Yamamiya Y, Sanada H (1992) Effects of various dietary fatty acids on amino-carboxymuconate-semialdehyde decarboxylase activity in rat liver. Biosci Biotechnol Biochem 56:2014–2019

    Google Scholar 

  • Egashira Y, Komine T, Ohta T, Shibata K, Sanada H (1997) Change of tryptophan–niacin metabolism in d-galactosamine-induced liver injury in the rat. J Nutr Sci Vitaminol 43:233–239

    CAS  PubMed  Google Scholar 

  • Froyland L, Vaagenes H, Asiedu DK, Garras A, Lie O, Berge RK (1996) Chronic administration of eicosapentaenoic acid and docosahexaenoic acid as ethyl esters reduced plasma cholesterol and changed the fatty acid composition in rat blood and organs. Lipids 31:169–178

    CAS  PubMed  Google Scholar 

  • Fukuoka S-I, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, Shibata K (2002) Identification and expression of a cDNA encoding human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD). J Biolog Chem 277:35162–35167

    Article  CAS  Google Scholar 

  • Fukuwatari T, Suzuki Y, Sugimoto E, Shibata K (2002) Elucidation of the toxic mechanism of the plasticizers, phthalaic acid esters, putative endocrine disrupters: effects of dietary di(2-ethylhexyl)phthalate on the metabolism of tryptophan to niacin in rats. Biosci Biotechnol Biochem 66:705–710

    Article  CAS  PubMed  Google Scholar 

  • Gervois P, Torra IP, Fruchart J-C, Staels B (2000) Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin Chemi Lab Med 38:3–11

    Article  CAS  Google Scholar 

  • Haghighi, B, Boroumand A, Behmanesh, O (1985) The effects of hydrazine on liver and serum lipids of normal and adrenalectomised rats. Indian J Pharmacol 17:214–218

    CAS  Google Scholar 

  • Halvorsen, B, Rustan AC, Christiansen EN (1995) Effect of long chain mono-unsaturated and n-3 polyunsaturated fatty acids on postprandial blood and liver lipids in rats. Scand J Clin Lab Invest 55:469–475

    CAS  PubMed  Google Scholar 

  • Hasmall SC, James NH, Macdonald N, Soames AR, Roberts RA (2000) Species differences in response to the plasticizer di-(2-ethylhexyl)phthalate: suppression of apoptosis, induction of DNA synthesis and peroxisome proliferator activated receptor α-mediated gene expression. Arch Toxicol 74:85–91

    Article  CAS  PubMed  Google Scholar 

  • Henninger C, Clouet P, Danh HC, Pascal M, Bezard J (1987) Effects of fenofibrate treatment on fatty acid oxidation in liver mitochondria of obese Zucker rats. Biochem Pharmacol 36:3231–3236

    Article  CAS  PubMed  Google Scholar 

  • Howarth JA, Price SC, Dobrota M, Kentish PA, Hinton RH (2001) Effects on male rats of di-(2-ethylhexyl)phthalate and di-n-hexylphthalate administered alone or in combination. Toxicol Lett 121:35–43

    Article  CAS  PubMed  Google Scholar 

  • Inoue I, Goto S-I, Mizotani K, Awata T, Mastunaga T, Kawai S-I, Nakajima T, Hokari S, Komoda T, Katayama S (2000) Lipophilic HMG-CoA reductase inhibitor has an anti-inflammatory effect. Reduction of mRNA levels for interleukin-1β, interleukin-6, cyclooxygenase-2 and p22phox by regulation of peroxisome proliferator-activated receptor α (PPARα) in primary endothelial cells. Life Sci 67:863–876

    Article  CAS  PubMed  Google Scholar 

  • Jenner AM, Timbrell JA (1994) Effect of acute and repeated exposure to low doses of hydrazine on hepatic microsomal enzymes and biochemical parameters in vivo. Arch Toxicol 68:240–245

    Article  CAS  PubMed  Google Scholar 

  • Lalwani ND, Reddy MK, Qureshi SA, Sirtori CR, Abiko Y, Reddy JK (1983) Evaluation of selected hypolipidaemic agents for the induction of peroxisomal enzymes and peroxisome proliferation in the rat liver. Hum Toxicol 2:27–48

    CAS  PubMed  Google Scholar 

  • Lazarow PB (1981) Assay of peroxisomal β-oxidation. Methods Enzymol 72:314–319

    Google Scholar 

  • Loo Y, Shin M, Yamashita Y, Ishigami M, Sasaki M, Sano K, Umezawa C (1995) Effect of feeding clofibrate-containing diet on the hepatic NAD level in rats. J Nutr Sci Vitaminol 41:341–347

    CAS  PubMed  Google Scholar 

  • Martin G, Duez H, Blanquart C, Berezowski V, Poulain P, Fruchart J-C, Najib-Fruchart J, Glineur C, Staels B (2001) Statin-induced inhibition of the Rho-signalling pathway activates PPAR-α and induces HDL apoA-I. J Clin Invest107:1423–1432

    Google Scholar 

  • Menahan LA, Williams RH (1971) Interrelationship between fatty acid oxidation and gluconeogenesis from pyruvate. Eur J Biochem 20:488–493

    CAS  PubMed  Google Scholar 

  • Mitchell FE, Price SC, Hinton RH, Grasso P, Bridges JW (1985) Time and dose response study of the effects on rats of plasticizer di-(2-ethylhexyl)phthalate. Toxicol Appl Pharmacol 81:371–392

    Article  CAS  PubMed  Google Scholar 

  • Mocchiutti NO, Bernal CA (1997) Effects of chronic di-(2-ethylhexyl)phthalate intake on the secretion and removal rate of triglyceride-rich lipoproteins in rats. Food Chem Toxicol 35:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Otto DA, Baltzell JK, Wooten JT (1992) Reduction in triacylglycerol levels by fish oil correlates with free fatty acid levels in ad libitum fed rats. Lipids 27:1012–1017

    Google Scholar 

  • Petit D, Bonnefis MT, Rey C, Infante R (1988) Effects of ciprofibrate and fenofibrate on liver lipids and lipoprotein synthesis in normo- and hyperlipidaemic rats. Atherosclerosis74:214–225

  • Price SC, Hall DE, Hinton RH (1985) Lipid accumulation in the livers of chlorpromazine-treated rats does not induce peroxisome proliferation. Toxicol Lett 25:11–18

    Article  CAS  PubMed  Google Scholar 

  • Price SC, Hinton RH, Mitchell FE, Hall DE, Grasso P, Blane GF, Bridges JW (1986) Time and dose study on the response of rats to the hypolipidaemic drug fenofibrate. Toxicology 41:169–191

    Article  CAS  PubMed  Google Scholar 

  • Prueksaritanont T, Ma B, Fang X, Subramanian R, Yu J, Lin JH (2001) Beta-oxidation of simvastatin in mouse liver preparations. Drug Metab Dispos 29:1251–1255

    CAS  PubMed  Google Scholar 

  • Ragazzi E, Costa CV, Caparrotta L, Biasiolo M, Bertazzo A, Allegri G (2002) Enzyme activites along the tryptophan–niacin pathway in alloxan diabetic rabbits. Biochim Biophys Acta 1471:9–17

    Google Scholar 

  • Reddy JK, Lalwai ND (1983) Carcinogenesis by hepatic peroxisome proliferators: Evaluation of the risk of hypolipidaemic drugs and industrial plasticizers to humans. Crit Rev Toxicol 12:1–58

    CAS  Google Scholar 

  • Ren B, Thelen AP, Peters JM, Gonzalez FJ, Jump DB (1997) Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require preoxisome proliferator-activated receptor α. J Biolog Chem 272:26827–26832

    Article  CAS  Google Scholar 

  • Ringeissen S, Connor SC, Brown HR, Sweatman BC, Hodson MP, Kenny SP, Haworth RI, McGill P, Price MA, Aylott MC, Nunez DJ, Haselden JN, Waterfield CJ (2003) Potential urinary and plasma biomarkers of peroxisome proliferation in the rat: identification of N-methylnicotinamide and N-methyl-4-pyridone-3-carboxamide by 1H nuclear magnetic resonance and high performance liquid chromatography. Biomarkers 8:240–271

    Article  CAS  PubMed  Google Scholar 

  • Roglans N, Sanguino E, Peris C, Alegret M, Vazquez M, Adzet T, Diaz C, Hernandez G, Laguna JC, Sanchez RM (2002a) Atorvastatin treatment induced peroxisome proliferator-activated receptor α expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J PharmacolExp Ther 302:232–239

    CAS  Google Scholar 

  • Roglans N, Verd JC, Peris C, Alegret M, Vazquez M, Adzet T, Diaz C, Hernandez G, Laguna JC, Sanchez RM (2002b) High doses of atorvastatin and simvastatin induce key enzymes involved in VLDL production. Lipids 37:445–454

    CAS  PubMed  Google Scholar 

  • Sakurai T, Miyazawa S, Hashimoto T (1978) Effects of di-(2-ethylhexyl) phthalate administration on carbohydrate and fatty acid metabolism in rat liver. J Biochem 83:312–320

    Google Scholar 

  • Sasaki J, Funakoshi M, Arakawa K (1985) Lipids and apolipoproteins in patients treated with major tranquilisers. Clin Pharmacol Ther 37:684–687

    CAS  PubMed  Google Scholar 

  • Scales MDC, Timbrell JA (1982) Studies on hydrazine hepatotoxicity. 1. Pathological findings. J Toxicol Environ Health 10:941–953

    CAS  PubMed  Google Scholar 

  • Schoonjans K, Peinado-Onsurbe J, Fruchart J-C, Tailleux A, Fievet C, Auwerx J (1999) 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors reduce serum triglyceride levels through modulation of apolipoprotein C-III and lipoprotein lipase. FEBS Lett 452:160–164

    Article  CAS  PubMed  Google Scholar 

  • Senada H (1985) Suppressive effect of dietary unsaturated fatty acids on α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme of tryptophan–niacin metabolism in rat. J Nutr Sci Vitaminol 31:327–337

    PubMed  Google Scholar 

  • Shin M, Asada S, Mizumori N, Sano K, Umezawa C (1998) Effect of thioridazine or chlorpromazine in increased hepatic NAD level in rats fed clofibrate, a hypolipidaemic drug. J Pharm Pharmacol 50:431–436

    CAS  PubMed  Google Scholar 

  • Shin M, Sano K, Umezawa C (1999) Effects of peroxisome proliferators on the TRP-NAD pathway. In: Heuther G, Kochen W et al. (eds). Tryptophan, serotonin and melatonin: basic aspects and applications. Kluwer Academic/Plenum, New York, Chap 43, pp 333–340

  • Slaughter MR, O’Brien PJ (2000) Fully-automated spectrophotometric method for measurement of antioxidant activity of catalase. Clin Biochem 7:525–534

    Article  Google Scholar 

  • Smit MJ, Temmerman AM, Wolters H, Kuipers F, Beynen AC, Vonk RJ (1991) Dietary fish oil-induced changes in intrahepatic cholesterol transport and bile acid synthesis in rats. J Clin Invest 88:943–951

    CAS  PubMed  Google Scholar 

  • Staels B, Van Tol A, Fruchart J-C, Auwerx J (1996) Effects of hypolipidaemic drugs on the expression of genes involved in high density lipoprotein metabolism in the rat. Israel J Med Sciences, 32:490–498

    Google Scholar 

  • Steiner S, Gatlin GL, Lennon JJ, Mcgrath AM, Seonarain MD, Makusky AJ, Aponte AM, Esquer-Blasco R, Anderson NL (2001) Cholesterol biosynthesis regulation and protein changes in rat liver following treatment with fluvastatin. Toxicol Lett 120:369–377

    Article  CAS  PubMed  Google Scholar 

  • Stenson WF, Seetharam B, Talkad V, Pickett W, Dudeja P, Brasitus TA (1989) Effects of dietary fish oil supplementation on membrane fluidity and enzyme activity in rat small intestine. Biochem J 263:41–45

    CAS  PubMed  Google Scholar 

  • Taskinen MR, Tuusi T (1987) Enzymes involved in triglyceride hydrolysis. Baillieres Clin Endocrinol Metab 1:639–666

    CAS  PubMed  Google Scholar 

  • Trout DL (1965) Effect of hydrazine on plasma free fatty acid transport. Biochem Pharmacol 14:812–821

    Article  Google Scholar 

  • Vamecq J (1987) Chlorpromazine and carnitine-dependency of rat liver peroxisomal β-oxidation of long chain fatty acids. Biochem J 241:783–791

    CAS  PubMed  Google Scholar 

  • Vamecq J, Roels F, Van den Branden C, Draye J-P (1987) Peroxisomal proliferation in heart and liver of mice receiving chlorpromazine, ethyl 2-(5-(4-chlorophenyl)pentyl)oxiran-2-carboxylic acid or high fat diet: a biochemical and morphometric comparative study. PaediatrRes 22:748–754

    CAS  Google Scholar 

  • Van den Branden C, Vamecq J, Dacremont G, Premereur N, Roels F (1987) Short and long term influence of phenothiazines on liver peroxisomal fatty acid oxidation in rodents. FEBS Lett 222:21–26

    Article  PubMed  Google Scholar 

  • Van Veldhoven P, Declercq PE, Debeer LJ, Mannaerts GP (1984) Effects of benfluorex and fenofibrate treatment on mitochondrial and peroxisomal marker enzymes in rat liver. Biochem Pharmacol 33:1143–1145

    Article  PubMed  Google Scholar 

  • Williams ML, Menon GK, Hanley KP (1992) HMG-CoA reductase inhibitors perturb fatty acid metabolism and induce peroxisomes in keratinocytes. J Lipid Res 33:193–208

    CAS  PubMed  Google Scholar 

  • Willumsen N, Skorve J, Hexeberg S, Rustan AC, Berge RK (1993a) The hypotriglyceridaemic effect of eicosapentaenoic acid in rats is reflected in increased mitochondrial fatty acid oxidation followed by diminished lipogenesis. Lipids 28:683–690

    CAS  PubMed  Google Scholar 

  • Willumsen N, Hexeberg S, Skorve J, Lundquist M, Berge RK (1993b) Docosahexaenoic acid shows no triglyceride-lowering effects but increases the peroxisomal fatty acid oxidation in liver of rats. J Lipid Res 34:12–22

    Google Scholar 

  • Zipper J (1997) Proliferation of myocardial peroxisomes caused by several agents and conditions. J Mol Cell Cardiol 29:149–161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Waterfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delaney, J., Hodson, M.P., Thakkar, H. et al. Tryptophan–NAD+ pathway metabolites as putative biomarkers and predictors of peroxisome proliferation. Arch Toxicol 79, 208–223 (2005). https://doi.org/10.1007/s00204-004-0625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-004-0625-5

Keywords

Navigation