Skip to main content

Advertisement

Log in

PknE, a serine/threonine protein kinase from Mycobacterium tuberculosis has a role in adaptive responses

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Serine/threonine protein kinases (STPK) play a major role in the physiology and pathogenesis of Mycobacterium tuberculosis. Here, we have examined the role of pknE, a STPK in the adaptive responses of M. tuberculosis using a deletion mutant ΔpknE. The survival of ΔpknE was assessed in the presence of stress (pH, surfactant and cell wall–damaging agents) and anti-tuberculosis drugs. ΔpknE had a defective growth in pH 7.0 and lysozyme (a cell wall–damaging agent) with better survival in pH 5.5, SDS and kanamycin (a second-line anti-tuberculosis drug). Furthermore, ΔpknE was reduced in cell size during growth in liquid media and exhibited hypervirulence in a guinea pig model of infection. In conclusion, our data suggest that pknE plays a role in adaptive response of M. tuberculosis regulating cellular integrity and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Arora K, Whiteford DC, Lau-Bonilla D, Davitt CM, Dahl JL (2008) Inactivation of lsr2 results in a hypermotile phenotype in Mycobacterium smegmatis. J Bacteriol 190:4291–4300

    Article  PubMed  CAS  Google Scholar 

  • Bardarov S et al (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148:3007–3017

    PubMed  CAS  Google Scholar 

  • Blumenthal A, Trujillo C, Ehrt S, Schnappinger D (2011) Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS ONE 5:e15667

    Article  Google Scholar 

  • Buchmeier NA, Newton GL, Fahey RC (2006) A mycothiol synthase mutant of Mycobacterium tuberculosis has an altered thiol-disulfide content and limited tolerance to stress. J Bacteriol 188:6245–6252

    Article  PubMed  CAS  Google Scholar 

  • Chao J et al (2010) Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. Biochim Biophys Acta 1804:620–627

    Article  PubMed  CAS  Google Scholar 

  • Deol P et al (2005) Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. J Bacteriol 187:3415–3420

    Article  PubMed  CAS  Google Scholar 

  • Drumm JE et al (2009) Mycobacterium tuberculosis universal stress protein Rv2623 regulates bacillary growth by ATP-Binding: requirement for establishing chronic persistent infection. PLoS Pathog 5:e1000460

    Article  PubMed  Google Scholar 

  • Gao LY et al (2003) Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49:1547–1563

    Article  PubMed  CAS  Google Scholar 

  • Geiman DE, Raghunand TR, Agarwal N, Bishai WR (2006) Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes. Antimicrob Agents Chemother 50:2836–2841

    Article  PubMed  CAS  Google Scholar 

  • Gopalaswamy R, Narayanan S, Jacobs WR Jr, Av-Gay Y (2008) Mycobacterium smegmatis biofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiol Lett 278:121–127

    Article  PubMed  CAS  Google Scholar 

  • Gopalaswamy R, Narayanan S, Chen B, Jacobs WR, Av-Gay Y (2009) The serine/threonine protein kinase PknI controls the growth of Mycobacterium tuberculosis upon infection. FEMS Microbiol Lett 295:23–29

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar D, Jacobs WR Jr, Narayanan S (2008) Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection. Cell Microbiol 10:365–374

    PubMed  CAS  Google Scholar 

  • Kana BD et al (2008) The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol 67:672–684

    Article  PubMed  CAS  Google Scholar 

  • Kang CM, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN (2005) The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704

    Article  PubMed  CAS  Google Scholar 

  • Kruuner A, Jureen P, Levina K, Ghebremichael S, Hoffner S (2003) Discordant resistance to kanamycin and amikacin in drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 47:2971–2973

    Article  PubMed  Google Scholar 

  • Kumar D, Narayanan S (2012) pknE, a serine/threonine kinase of Mycobacterium tuberculosis modulates multiple apoptotic paradigms. Infect Genet Evol 12(4):737–747

    Google Scholar 

  • Malhotra V, Arteaga-Cortes LT, Clay G, Clark-Curtiss JE (2010) Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: implications for immune modulation. Microbiology 156:2829–2841

    Article  PubMed  CAS  Google Scholar 

  • Molle V, Kremer L (2010) Division and cell envelope regulation by Ser/Thr phosphorylation: mycobacterium shows the way. Mol Microbiol 75:1064–1077

    Article  PubMed  CAS  Google Scholar 

  • Molle V, Girard-Blanc C, Kremer L, Doublet P, Cozzone AJ, Prost JF (2003) Protein PknE, a novel transmembrane eukaryotic-like serine/threonine kinase from Mycobacterium tuberculosis. Biochem Biophys Res Commun 308:820–825

    Article  PubMed  CAS  Google Scholar 

  • Mouslim C, Hilbert F, Huang H, Groisman EA (2002) Conflicting needs for a Salmonella hypervirulence gene in host and non-host environments. Mol Microbiol 45:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Ojha AK et al (2008) Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Dolai S, Yadav RK, Adak S (2010) Ascorbate peroxidase from Leishmania major controls the virulence of infective stage of promastigotes by regulating oxidative stress. PLoS One 5:e11271

    Google Scholar 

  • Pang X et al (2007) Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of Mycobacterium tuberculosis. Microbiology 153:1229–1242

    Article  PubMed  CAS  Google Scholar 

  • Papavinasasundaram KG, Chan B, Chung JH, Colston MJ, Davis EO, Av-Gay Y (2005) Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J Bacteriol 187:5751–5760

    Article  PubMed  CAS  Google Scholar 

  • Raymond JB, Mahapatra S, Crick DC, Pavelka MS Jr (2005) Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J Biol Chem 280:326–333

    Article  PubMed  CAS  Google Scholar 

  • Rengarajan J et al (2008) Mycobacterium tuberculosis Rv2224c modulates innate immune responses. Proc Natl Acad Sci USA 105:264–269

    Article  PubMed  CAS  Google Scholar 

  • Rohde KH, Abramovitch RB, Russell DG (2007) Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2:352–364

    Article  PubMed  CAS  Google Scholar 

  • Sampson S, Warren R, Richardson M, van der Spuy G, van Helden P (2001) IS6110 insertions in Mycobacterium tuberculosis: predominantly into coding regions. J Clin Microbiol 39:3423–3424

    Article  PubMed  CAS  Google Scholar 

  • Schaefer WB, Lewis CW Jr (1965) Effect of oleic acid on growth and cell structure of mycobacteria. J Bacteriol 90:1438–1447

    PubMed  CAS  Google Scholar 

  • Selvakumar N, Sudhamathi S, Duraipandian M, Frieden TR, Narayanan PR (2004) Reduced detection by Ziehl-Neelsen method of acid-fast bacilli in sputum samples preserved in cetylpyridinium chloride solution. Int J Tuberc Lung Dis 8:248–252

    PubMed  CAS  Google Scholar 

  • Suzuki Y et al (1998) Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. J Clin Microbiol 36:1220–1225

    PubMed  CAS  Google Scholar 

  • ten Bokum AM, Movahedzadeh F, Frita R, Bancroft GJ, Stoker NG (2008) The case for hypervirulence through gene deletion in Mycobacterium tuberculosis. Trends Microbiol 16:436–441

    Article  PubMed  Google Scholar 

  • Vandal OH, Roberts JA, Odaira T, Schnappinger D, Nathan CF, Ehrt S (2009) Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J Bacteriol 191:625–631

    Article  PubMed  CAS  Google Scholar 

  • Walburger A et al (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304:1800–1804

    Article  PubMed  CAS  Google Scholar 

  • Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A (2011) Immunological biomarkers of tuberculosis. Nat Rev Immunol 11:343–354

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Dinesh kumar is a recipient of ICMR-SRF fellowship. We thank posthumously late Ms. Nalini Sunder Mohan, Dept of Bacteriology, NIRT for her help in drug sensitivity assay. We thank Dr. Lily Therese, Professor and Head, Dept of Microbiology and Mrs Uma Maheshwari, Sankara Nethralaya for their help with DIC images. We thank Mr. Chandran, Department of Clinical Pathology, NIRT for his help in animal experiments.

Conflict of interest

No funds were received except ICMR-SRF fellowship to Mr. Dinesh Kumar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujatha Narayanan.

Additional information

Communicated by Jorge Membrillo-Hernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, D., Palaniyandi, K., Challu, V.K. et al. PknE, a serine/threonine protein kinase from Mycobacterium tuberculosis has a role in adaptive responses. Arch Microbiol 195, 75–80 (2013). https://doi.org/10.1007/s00203-012-0848-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0848-4

Keywords

Navigation