Skip to main content
Log in

Phage specificity and lipopolysaccarides of stem- and root-nodulating bacteria (Azorhizobium caulinodans, Sinorhizobium spp., and Rhizobium spp.) of Sesbania spp.

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Phage susceptibility pattern and its correlation with lipopolysaccharide (LPS) and plasmid profiles may help in understanding the phenotypic and genotypic diversity among highly promiscuous group of rhizobia nodulating Sesbania spp.; 43 phages were from two stem-nodulating bacteria of S. rostrata and 16 phages were from root-nodulating bacteria of S. sesban, S. aegyptica and S. rostrata. Phage susceptibility pattern of 38 Sesbania nodulating bacteria was correlated with their LPS rather than plasmid profiles. Different species of bacteria (A. caulinodans- ORS571, SRS1-3 and Sinorhizobium saheli- SRR907, SRR912) showing distinct LPS subtypes were susceptible to different group of phages. Phages could also discriminate the strains of Si. saheli (SSR312, SAR610) possessing distinct LPS subtypes. Phages of Si. meliloti (SSR302) were strain-specific. All the strains of R. huautlense having incomplete LPS (insignificant O-chain) were phage-resistant. In in vitro assay, 100% of the phages were adsorbed to LPS of indicator bacterium or its closely related strain(s) only. These observations suggest the significance of LPS in phage specificity of Sesbania nodulating rhizobia. Highly specific phages may serve as biological marker for monitoring the susceptible bacterial strains in culture collections and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Ackermann H-W (2001) Frequency of morphological phage descriptions in the year 2000. Arch Virol 146:843–857

    Article  PubMed  CAS  Google Scholar 

  • Defives C, Werquin M, Mary P, Hornez JP (1996) Roles of exopolysaccharides and lipopolysaccharides in the adsorption of the siphovirus phage NM8 to Rhizobium meliloti M11S cells. Curr Microbiol 33:371–376

    Article  PubMed  CAS  Google Scholar 

  • D’Haeze W, Glushka J, De Rycke R, Holsters M, Carlson RW (2004) Structural characterization of extracellular polysaccharides of Azorhizobium caulinodans and importance for nodule initiation on Sesbania rostrata. Mol Microbiol 52:485–500

    Article  PubMed  CAS  Google Scholar 

  • Dreyfus BL, Dommergues YR (1981) Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10:313

    Article  CAS  Google Scholar 

  • Gao M, D’Haeze W, De Rycke R, Wolucka B, Holsters M (2001) Knockout of an azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. Mol Plant Microbe Interact 14:857–866

    Article  PubMed  CAS  Google Scholar 

  • Goethals K, Leyman B, van Den Eede G, van Montagu M, Holsters M (1994) An Azorhizobium caulinodans ORS 571 locus involved in lipopolysaccharide production and stem nodule formation on Sesbania rostrata stems and roots. J Bacteriol 176:92–99

    PubMed  CAS  Google Scholar 

  • Holmberg SD, Wachsmuth K, Hickman-Brenner FW, Cohen ML (1984) Comparison of plasmid profile analysis, phage typing, and antimicrobial susceptibility testing in characterizing Salmonella typhimurium isolates from outbreaks. J Clin Microbiol 19:100–104

    PubMed  CAS  Google Scholar 

  • Jun G, Aird ELH, Kannenberg E, Downie JA, Johnston AWB (1993) The sym plasmid pRP2JI and at least two other loci of Rhizobium leguminosarum biovar phaseoli can confer resistance to infection by the virulent bacteriophage RL38. FEMS Microbiol Lett 111:321–326

    Article  CAS  Google Scholar 

  • Lagares A, Hozbor DF, Niehaus K, Pich Otero AJL, Lorenzen J, Arnold W, Pühler A (2001) Genetic characterization of a Sinorhizobium meliloti chromosomal region involved in lipopolysaccharide biosynthesis. J Bacteriol 183:1248–1258

    Article  PubMed  CAS  Google Scholar 

  • deLajudie P, Bogusz D (1984) Isolation and characterization of two bacteriophages of a stem-nodulating Rhizobium strain from Sesbania rostrata. Can J Microbiol 30:521–525

    Google Scholar 

  • Lesley SM (1982) A bacteriophage typing system for Rhizobium meliloti. Can J Microbiol 28:180–189

    Article  Google Scholar 

  • Lindstrom K, Jarvis BDW, Lindström PE, Patel JJ (1983) DNA homology, phage-typing, and cross-nodulation studies of rhizobia infecting Galega species. Can J Microbiol 29:781–789

    Google Scholar 

  • Lindstrom K, Lehtomaki S (1988) Metabolic properties, maximum growth temperature and phage sensitivity of Rhizobium sp. (Galega) compared with other fast-growing rhizobia. FEMS Microbiol Lett 50:277–287

    Article  Google Scholar 

  • Lindstrom K, Lipsanen P, Kaijalainen S (1990) Stability of markers used for identification of two Rhizobium galegae inoculant strains after five years in the field. Appl Environ Microbiol 56:444–450

    PubMed  CAS  Google Scholar 

  • Lipsanen P, Lindstrom K (1989) Lipopolysaccharide and protein patterns of Rhizobium sp. (Galeaga). FEMS Microbiol Lett 58:323–328

    Article  CAS  Google Scholar 

  • Lu J, Chen F, Hodson RE (2001) Distribution, isolation, host specificity and diversity of cyanophages infecting marine Synechococcus sp. in river estuaries. Appl Environ Microbiol 67:3285–3290

    Article  PubMed  CAS  Google Scholar 

  • Mishra V, Sharma RS, Yadav S, Babu CR, Singh TP (2004) Purification and characterization of four isoforms of Himalayan mistletoe ribosome-inactivating protein from Viscum album having unique sugar affinity. Arch Biochem Biophys 423:288–301

    Article  PubMed  CAS  Google Scholar 

  • Mohmmed A, Sharma RS, Ali S, Babu CR (2001) Molecular diversity of the plasmid genotypes among Rhizobium gene pools of sesbanias from different habitats of a semi-arid region (Delhi). FEMS Microbiol Lett 205:171–178

    Article  PubMed  CAS  Google Scholar 

  • Olsson JE, Rolfe BG (1985) Stem and root nodulation of the tropical legume Sesbania rostrata by Rhizobium strains ORS-571 and WE7. J Plant Physiol 121:199–210

    Google Scholar 

  • Olsson JE, Rolfe BG, Shine J, Plazinski J, Nayadu M, Ridge R, Dart P (1984) The biological characterization of Sesbania rostrata infection by Rhizobium species. In: Vegar C, Newton WE (eds) Advances in nitrogen fixation research. Nijhoff, Hague, p 715

    Google Scholar 

  • Plazinski J, Cen YH, Rolfe BG (1985) General method for the identification of plasmid species in fast-growing soil microorganisms. Appl Environ Microbiol 49:1001–1003

    PubMed  CAS  Google Scholar 

  • Putnoky P, Petrovics G, Kereszt A, Grosskopf E, Thi Cam Ha D, Banfalvi Z, Kondorosi A (1990) Rhizobium meliloti lipopolysaccharide and exopolysaccharide can have the same function in the plant-bacterium interaction. J Bacteriol 172:5450–5458

    PubMed  CAS  Google Scholar 

  • Sechter I, Mestre F, Hansen DF (2000) Twenty-three years of Klebsiella phage typing: a review of phage typing of 12 clusters of nosocomial infections, and a comparison of phage typing with K serotyping. Clin Microbiol Infect 6:233–238

    Article  PubMed  CAS  Google Scholar 

  • Sharma RS, Mohmmed A, Babu CR (2002) Diversity among rhizobiophages from rhizosphere of legumes inhabiting three ecogeographical regions of India. Soil Biol Biochem 34:965–973

    Article  CAS  Google Scholar 

  • Sharma RS, Mohmmed A, Mishra V, Babu CR (2005) Diversity in promiscuous group of rhizobia from three Sesbania spp. colonizing ecologically distinct habitats of the semi-arid Delhi region. Res Microbiol 156:57–67

    Article  PubMed  CAS  Google Scholar 

  • Werts C, Michel V, Hofnung M, Charbit A (1994) Adsorption of bacteriophage lambda on the LamB protein of Escherichia coli K-12: point mutations in gene J of lambda responsible for extended host range. J Bacteriol 176:941–947

    PubMed  CAS  Google Scholar 

  • Wildemauwe C, Godard C, Verschraegen G, Claeys G, Duyck M-C, De Beenhouwer H, Vanhoof R (2004) Ten years phage-typing of Belgian clinical methicillin-resistant Staphylococcus aureus isolates (1992–2001). J Hosp Infect 56:16–21

    Article  PubMed  CAS  Google Scholar 

  • Withey S, Cartmell E, Avery LM, Stephenson T (2005) Bacteriophages–potential for application in wastewater treatment processes. Sci Total Environ 339:1–18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Biotechnology (DBT), Department of Science and Technology, Government of India and University of Delhi for financial support. We also thank Dr. A. Toussaint (Université Libre de Bruxelles) for his criticism and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey Shyam Sharma.

Additional information

Communicated by Ercko Stackebrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R.S., Mishra, V., Mohmmed, A. et al. Phage specificity and lipopolysaccarides of stem- and root-nodulating bacteria (Azorhizobium caulinodans, Sinorhizobium spp., and Rhizobium spp.) of Sesbania spp.. Arch Microbiol 189, 411–418 (2008). https://doi.org/10.1007/s00203-007-0322-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0322-x

Keywords

Navigation