Skip to main content
Log in

New genes involved in chromate resistance inRalstonia metallidurans strain CH34

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

An Erratum to this article was published on 20 March 2004

Abstract

Chromate resistance inRalstonia metallidurans CH34 is based on chromate efflux catalyzed by ChrA efflux pumps. The bacterium harbors two chromate resistance determinants, the previously knownchr 1 on plasmid pMOL28 (geneschrI, chrB 1,chrA 1,chrC, chrE, chrF 1) andchr 2 on the chromosome (geneschrB 2,chrA 2,chrF 2). Deletion of the geneschrl, chrC, chrA 2,chrB 2 andchrF 2 influenced chromate resistance and transcription from achrBp 1::lacZ fusion. Deletion of the plasmid-encoded genechrBx did not change chromate resistance orchrBp 1 regulation. Northern hybridization and primer-extension experiments were used to study transcription of the plasmid-encodedchr 1 determinant. Transcription ofchrB 1,chrA 1 andchrC was induced by chromate. The presence of sulfate influenced transcription positively. ThechrBp 1,chrAp 1 andchrCp promoters showed some similarity to heat-shock promoters. Transcription of the generpoH encoding a putative heat-shock sigma factor was also induced by chromate, butrpoH was not essential for chromate resistance. The ChrC protein was purified as a homotetramer and exerted superoxide dismutase activity. Thus, possible regulators for chromate resistance (Chrl, ChrB1, ChrB2, ChrF1, and ChrF2) and an additional detoxification system (ChrC) were newly identified as parts of chromate resistance inR. metallidurans.

Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00203-002-0492-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SOD :

Superoxide dismutase

References

  • Alvarez AH. Moreno-Sanchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein fromPseudomonas aeruginosa. J Bacteriol 181:7398–7400

    PubMed  CAS  Google Scholar 

  • Arslan P, Beltrame M, Tomasi A (1987) Intracellular chromium reduction. Biochim Biophys Acta 931:10–15

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance in plants. New Phytol 106: 93–111

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels. Anal Chem 44:276–287

    CAS  Google Scholar 

  • Bordo D, Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily: Sequence-structure-function relations. EMBO Rep. 3: 741–746

    Article  PubMed  CAS  Google Scholar 

  • Bukau B (1993) Regulation of theEscherichia coli heat-shock response. Mol Microbiol 9:671–680

    Article  PubMed  CAS  Google Scholar 

  • Cervantes C, Ohtake H, Chu L, Misra TK, Silver S (1990) Cloning, nucleotide sequence, and expression of the chromate resistance determinant ofPseudomonas aeruginosa plasmid pUM505. J Bacteriol 172:287–291

    PubMed  CAS  Google Scholar 

  • Cowing DW, Bardwell JCA, Craig EA, Woolford C, Hendrix RW, Gross CA (1985) Consensus sequence forE. coli heat shock gene promoters. Proc Natl Acad Sci USA 82:2679–2683

    Article  PubMed  CAS  Google Scholar 

  • Debetto P, Arslan P, Antolini M, Luciani S (1988) Uptake of chromate by rat thymocytes and role of glutathione in its cytoplasmic reduction. Xenobiotica 18:657–664

    Article  PubMed  CAS  Google Scholar 

  • Deretic V, Chandrasekharappa S, Gill JF, Chatterjee DK, Chakrabarty A (1987) A set of cassettes and improved vectors for genetic and biochemical characterization ofPseudomonas genes. Gene 57:61–72

    Article  PubMed  CAS  Google Scholar 

  • Goris J, De Vos P, Coenye T, Host, B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes asRalstonia campinensis sp. nov.,Ralstonia metallidurans sp. nov. andRalstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782

    PubMed  CAS  Google Scholar 

  • Gross CA (1996) Function and regulation of the heat shock proteins. In: Neidhardt FC (ed)Escherichia coli and Salmonella txphimurium: cellular and molecular biology. ASM, Washington DC, pp 1382–1399

    Google Scholar 

  • Große C, Grass G, Anton A, Frank S, Navarrete Santos A, Lawley B, Brown NL, Nies DH (1999) Transcriptional organization of theczc heavy metal homoeostasis determinant fromAlcaligenes eutrophus. J Bacteriol 181:2385–2393

    PubMed  Google Scholar 

  • Lenz O, Schwartz E, Dernedde J, Eitinger T, Friedrich B (1994) TheAlcaligenes eutrophus H16hoxX gene participates in hy-drogenase regulation. J Bacteriol 176:4385–4393

    PubMed  CAS  Google Scholar 

  • Liesegang H, Lemke K, Siddiqui RA, Schlegel H-G (1993) Characterization of the inducible nickel and cobalt resistance determinantcnr from pMOL28 ofAlcaligenes eutrophus CH34. J Bacteriol 175:767–778

    PubMed  CAS  Google Scholar 

  • Liu KJ, L. SX, Dalai NS (1997) Synthesis of Cr(IV) GSH, its identification and its free hydroxal radical generation: a model compound for Cr(VI) carcinogenicity. Biochem Biophvs Res Comm 235:54–58

    Article  CAS  Google Scholar 

  • Manoil C (1990) Analysis of protein localization by use of gene fusions with complementary properties. J Bacteriol 172:1035–1042

    PubMed  CAS  Google Scholar 

  • Manzarena M, Aranda-Olmedo I, Ramos JL, Marqués S (2001) Molecular characterisation ofPseudomonas putida KT2440rpoH gene regulation. Microbiology 147:1323–1330

    Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijse-gem F (1985)Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  • Nies DH (1992) CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc and cadmium (czc system) inAlcaligenes eutrophus. J Bacteriol 174:8102–8110

    PubMed  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Nies DH (2000) Heavy metal resistant bacteria as extremophiles: molecular physiology and biotechnological use ofRalstonia spec. CH34. Extremophiles 4:77–82

    Article  PubMed  CAS  Google Scholar 

  • Nies DH, Silver S (1989a) Metal ion uptake by a plasmid-free metal-sensitiveAlcaligenes eutrophus strain. J Bacteriol 171: 4073–4075

    PubMed  CAS  Google Scholar 

  • Nies DH, Silver S (1989b) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt inAlcaligenes eutrophus. J Bacteriol 171:896–900

    PubMed  CAS  Google Scholar 

  • Nies D, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt inAlcaligenes eutrophus CH34. J Bacteriol 169:4865–4868

    PubMed  CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1989a) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt inAlcaligenes eutrophus. J Bacteriol 171:5065–5070

    PubMed  CAS  Google Scholar 

  • Nies DH, Nies A, Chu L, Silver S (1989b) Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system fromAlcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355

    Article  PubMed  CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant fromAlcaligenes eutrophus. J Biol Chem 265:5648–5653

    PubMed  CAS  Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MHJ (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate transporters. J Bacteriol 180:5799–5802

    PubMed  CAS  Google Scholar 

  • Pardee AB, Jacob F, Monod J (1959) The genetic control and cytoplasmic expression of inducibility in the synthesis of β-galactosidase ofEscherichia coli. J Mol Biol 1:165–168

    Article  CAS  Google Scholar 

  • Peitzsch N, Eberz G, Nies DH (1998)Alcaligenes eutrophus as a bacterial chromate sensor. Appl Environ Microbiol 64:453–458

    PubMed  CAS  Google Scholar 

  • Pimentel BE, Moreno-Sanchez R, Cervantes C (2002) Efflux of chromate byPseudomonas aeruginosa cells expressing the ChrA protein. FEMS Microbiol Lett 212:249–254

    Article  PubMed  CAS  Google Scholar 

  • Rensing C, Pribyl T, Nies DH (1997) New functions for the three subunits of the CzcCBA cation-proton-antiporter. J Bacteriol 179:6871–6879

    PubMed  CAS  Google Scholar 

  • Roberts RC, Toochinda C, Avedissian M, Baldini RL, Gomes SL, Shapiro L (1996) Identification of aCaulobacter operon encodinghrcA, involved in negatively regulating heat-inducible transcription, and the chaperone genegrpE. J Bacteriol 178: 1829–1841

    PubMed  CAS  Google Scholar 

  • Roux M, Coves J (2002) The iron-containing superoxide dismutase ofRalstonia metallidurans CH34. FEMS Microbiol Lett 210:129–133

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Self WT, Tsai L, Stadtman TC (2000) Synthesis and characterization of selenotrisulfide-derivatives of lipoic acid and lipoamide. Proc Natl Acad Sci USA 97:12481–12486

    Article  PubMed  CAS  Google Scholar 

  • Simon R, Priefer U, Piihler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1:784–791

    Article  CAS  Google Scholar 

  • Ullmann A (1984) One-step purification of hybrid proteins which have β-galactosidase activity. Gene 29:27–31

    Article  PubMed  CAS  Google Scholar 

  • Van Dyk TK, Reed TR, Vollmer AC, LaRossa RA (1995) Synergistic induction of the heat shock response inEscherichia coli by simultaneous treatment with chemical inducers. J Bacteriol 177:6001–6004

    PubMed  Google Scholar 

  • Wu K, Newton A (1996) Isolation, identification and transcriptional specificity of the heat shock sigma factor σ32 fromCaulobacter crescentus. J Bacteriol 178:2094–2101

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich H. Nies.

Additional information

Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.d0i.0r2/>10.1007/s00203-002-0492-5.

Published online: 7 November 2002

An erratum to this article is available at http://dx.doi.org/10.1007/s00203-004-0665-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juhnke, S., Peitzsch, N., Hübener, N. et al. New genes involved in chromate resistance inRalstonia metallidurans strain CH34. Arch Microbiol 179, 15–25 (2002). https://doi.org/10.1007/s00203-002-0492-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-002-0492-5

Keywords

Navigation