Skip to main content

Advertisement

Log in

The role of the gastrointestinal tract in calcium homeostasis and bone remodeling

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

While skeletal biology was approached in a rather isolated fashion in the past, an increasing understanding of the interplay between extraskeletal organs and bone remodeling has been obtained in recent years. This review will discuss recent advances in the field that have shed light on how the gastrointestinal tract and bone relate to each other. In particular, the importance of the GI tract in maintaining calcium homeostasis and skeletal integrity will be reviewed as impaired gastric acid production represents a major public health problem with possible implications for sufficient calcium absorption. Osteoporosis, the most prevalent bone disease worldwide, is caused not only by intrinsic defects affecting bone cell differentiation and function but also by a large set of extrinsic factors including hormonal disturbances, malnutrition, and iatrogenic drug application. Given the skeletal requirements of calcium, amino acids, and energy for bone turnover and renewal, it is not surprising that the gastrointestinal (GI) tract is of major importance for skeletal integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Karsenty G, Ferron M (2012) The contribution of bone to whole-organism physiology. Nature 481:314–320

    Article  CAS  PubMed  Google Scholar 

  2. Howgate DJ, Graham SM, Leonidou A, Korres N, Tsiridis E, Tsapakis E (2013) Bone metabolism in anorexia nervosa: molecular pathways and current treatment modalities. Osteoporos Int 24:407–421

    Google Scholar 

  3. Ghishan FK, Kiela PR (2011) Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol 300:G191–201

    Article  CAS  PubMed  Google Scholar 

  4. Lau YT, Ahmed NN (2012) Fracture risk and bone mineral density reduction associated with proton pump inhibitors. Pharmacotherapy 32:67–79

    Article  CAS  PubMed  Google Scholar 

  5. Aoki K, Kihaile PE, Wenyuan Z, Xianghang Z, Castro M, Disla M, Nyambo TB, Misumi J (2005) Comparison of prevalence of chronic atrophic gastritis in Japan, China, Tanzania, and the Dominican Republic. Ann Epidemiol 15:598–606

    Article  PubMed  Google Scholar 

  6. Valle J, Kekki M, Sipponen P, Ihamäki T, Siurala M (1996) Long-term course and consequences of Helicobacter pylori gastritis. Results of a 32-year follow-up study. Scand J Gastroenterol 31:546–550

    Article  CAS  PubMed  Google Scholar 

  7. Ihamäki T, Sipponen P, Varis K, Kekki M, Siurala M (1991) Characteristics of gastric mucosa which precede occurrence of gastric malignancy: results of long-term follow-up of three family samples. Scand J Gastroenterol 186:16–23

    Article  Google Scholar 

  8. Cole ZA, Dennison EM, Cooper C (2008) Osteoporosis epidemiology update. Curr Rheumatol Rep 10:92–96

    Article  PubMed  Google Scholar 

  9. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G (2004) ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin–Lowry syndrome. Cell 117:387–398

    Article  CAS  PubMed  Google Scholar 

  10. Elefteriou F, Benson MD, Sowa H, Starbuck M, Liu X, Ron D, Parada LF, Karsenty G (2006) ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 4:441–451

    Article  CAS  PubMed  Google Scholar 

  11. Gong Y et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523

    Article  CAS  PubMed  Google Scholar 

  12. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521

    Article  CAS  PubMed  Google Scholar 

  13. Little RD et al (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–19

    Article  CAS  PubMed  Google Scholar 

  14. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ (2012) Update on Wnt signaling in bone cell biology and bone disease. Gene 492:1–18

    Article  CAS  PubMed  Google Scholar 

  15. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schütz G, Glorieux FH, Chiang CY, Zajac JD, Insogna KL, Mann JJ, Hen R, Ducy P, Karsenty G (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837

    Article  CAS  PubMed  Google Scholar 

  16. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR, Zhong Z, Matthes S, Jacobsen CM, Conlon RA, Brommage R, Liu Q, Mseeh F, Powell DR, Yang QM, Zambrowicz B, Gerrits H, Gossen JA, He X, Bader M, Williams BO, Warman ML, Robling AG (2011) Lrp5 functions in bone to regulate bone mass. Nat Med 17:684–691

    Article  CAS  PubMed  Google Scholar 

  17. Liu B, Anderson G, Mittmann N, To T, Axcell T, Shear N (1998) Use of selective serotonin-reuptake inhibitors or tricyclic antidepressants and risk of hip fractures in elderly people. Lancet 351:1303–1307

    Article  CAS  PubMed  Google Scholar 

  18. Richards JB, Papaioannou A, Adachi JD, Joseph L, Whitson HE, Prior JC, Goltzman D, Canadian Multicentre Osteoporosis Study Research Group (2007) Effect of selective serotonin reuptake inhibitors on the risk of fracture. Arch Intern Med 167:188–194

    Article  CAS  PubMed  Google Scholar 

  19. Wu Q, Bencaz AF, Hentz JG, Crowell MD (2012) Selective serotonin reuptake inhibitor treatment and risk of fractures: a meta-analysis of cohort and case–control studies. Osteoporos Int 23:365–375

    Article  CAS  PubMed  Google Scholar 

  20. Rizzoli R, Cooper C, Reginster JY, Abrahamsen B, Adachi JD, Brandi ML, Bruyère O, Compston J, Ducy P, Ferrari S, Harvey NC, Kanis JA, Karsenty G, Laslop A, Rabenda V, Vestergaard P (2012) Antidepressant medications and osteoporosis. Bone 51:606–613

    Article  CAS  PubMed  Google Scholar 

  21. Goltzman D (2010) Vitamin D action: lessons learned from genetic mouse models. Ann N Y Acad Sci 1192:145–152

    Article  CAS  PubMed  Google Scholar 

  22. Nijweide PJ, Burger EH, Feyen JHM (1986) Cells of bone: proliferation, differentiation, and hormonal regulation. Physiol Rev 66:855–886

    CAS  PubMed  Google Scholar 

  23. Stein GS, Lian JB, van Wijnen AJ, Stein JL (1997) The osteocalcin gene: a model for multiple parameters of skeletal-specific transcriptional control. Mol Biol Rep 24:185–196

    Article  CAS  PubMed  Google Scholar 

  24. Owen TA, Aronow MS, Barone LM, Bettencourt B, Stein GS, Lian JB (1999) Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology 128:1496–1504

    Article  Google Scholar 

  25. Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, Delling G, Demay MB (1998) Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 139:4391–4396

    Google Scholar 

  26. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987

    Article  CAS  PubMed  Google Scholar 

  27. Hochberg Z, Tiosano D, Even L (1992) Calcium therapy for calcitriol-resistant rickets. J Pediatr 121:803–808

    Article  CAS  PubMed  Google Scholar 

  28. Hochberg Z, Weisman Y (1995) Calcitriol-resistant rickets due to vitamin D receptor defects. Trends Endocrinol Metab 6:216–220

    Article  CAS  PubMed  Google Scholar 

  29. Silva BC, Costa AG, Cusano NE, Kousteni S, Bilezikian JP (2011) Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest 34:801–810

    CAS  PubMed  Google Scholar 

  30. Rosen CJ, Brown S (2003) Severe hypocalcemia after intravenous bisphosphonate therapy in occult vitamin D deficiency. N Engl J Med 348:1503–1504

    Article  PubMed  Google Scholar 

  31. Maalouf NM, Heller HJ, Odvina CV, Kim PJ, Sakhaee K (2006) Bisphosphonate-induced hypocalcemia: report of 3 cases and review of literature. Endocr Pract 12:48–53

    Article  PubMed  Google Scholar 

  32. Liamis G, Milionis HJ, Elisaf M (2009) A review of drug-induced hypocalcemia. J Bone Miner Metab 27:635–642

    Google Scholar 

  33. Kaplan FS, August CS, Fallon MD, Gannon F, Haddad JG (1993) Osteopetrorickets. The paradox of plenty. Pathophysiology and treatment. Clin Orthop Relat Res 294:64–78

    PubMed  Google Scholar 

  34. Tolar J, Teitelbaum SL, Orchard PJ (2004) Osteopetrosis. N Engl J Med 351:2839–2849

    Article  PubMed  Google Scholar 

  35. Li YP, Chen W, Liang Y, Li E, Stashenko P (1999) Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nat Genet 23:447–451

    Article  CAS  PubMed  Google Scholar 

  36. Banco R, Seifert MF, Marks SC Jr, McGuire JL (1985) Rickets and osteopetrosis: the osteosclerotic (OC) mouse. Clin Orthop Relat Res 201:238–246

    PubMed  Google Scholar 

  37. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L, Notarangelo LD, Vezzoni P, Villa A (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346

    Article  CAS  PubMed  Google Scholar 

  38. Taranta A, Migliaccio S, Recchia I, Caniglia M, Luciani M, De Rossi G, Dionisi-Vici C, Pinto RM, Francalanci P, Boldrini R, Lanino E, Dini G, Morreale G, Ralston SH, Villa A, Vezzoni P, Del Principe D, Cassiani F, Palumbo G, Teti A (2003) Genotype–phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis. Am J Pathol 162:57–68

    Article  CAS  PubMed  Google Scholar 

  39. Del Fattore A, Peruzzi B, Rucci N, Recchia I, Cappariello A, Longo M, Fortunati D, Ballanti P, Iacobini M, Luciani M, Devito R, Pinto R, Caniglia M, Lanino E, Messina C, Cesaro S, Letizia C, Bianchini G, Fryssira H, Grabowski P, Shaw N, Bishop N, Hughes D, Kapur RP, Datta HK, Taranta A, Fornari R, Migliaccio S, Teti A (2006) Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment. J Med Genet 43:315–325

    Article  PubMed  Google Scholar 

  40. Schinke T, Schilling AF, Baranowsky A, Seitz S, Marshall RP, Linn T, Blaeker M, Huebner AK, Schulz A, Simon R, Gebauer M, Priemel M, Kornak U, Perkovic S, Barvencik F, Beil FT, Del Fattore A, Frattini A, Streichert T, Pueschel K, Villa A, Debatin KM, Rueger JM, Teti A, Zustin J, Sauter G, Amling M (2009) Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med 15:674–681

    Article  CAS  PubMed  Google Scholar 

  41. Ivanovich P, Fellows H, Rich C (1967) The absorption of calcium carbonate. Ann Intern Med 66:917–923

    Article  CAS  PubMed  Google Scholar 

  42. Langhans N, Rindi G, Chiu M, Rehfeld JF, Ardman B, Beinborn M, Kopin AS (1997) Abnormal gastric histology and decreased acid production in cholecystokinin-B/gastrin receptor-deficient mice. Gastroenterology 112:280–286

    Article  CAS  PubMed  Google Scholar 

  43. Axelson J, Persson P, Gagnemo-Persson R, Håkanson R (1991) Importance of the stomach in maintaining calcium homoeostasis in the rat. Gut 32:1298–1302

    Article  CAS  PubMed  Google Scholar 

  44. Maier GW, Kreis ME, Zittel TT, Becker HD (1997) Calcium regulation and bone mass loss after total gastrectomy in pigs. Ann Surg 225:181–192

    Article  CAS  PubMed  Google Scholar 

  45. Scarff KL, Judd LM, Toh BH, Gleeson PA, Van Driel IR (1999) Gastric H(+), K(+)-adenosine triphosphatase beta subunit is required for normal function, development, and membrane structure of mouse parietal cells. Gastroenterology 117:605–618

    Article  CAS  PubMed  Google Scholar 

  46. Fossmark R, Stunes AK, Petzold C, Waldum HL, Rubert M, Lian AM, Reseland JE, Syversen U (2011) Decreased bone mineral density and reduced bone quality in H+/K+ ATPase beta-subunit deficient mice. J Cell Biochem 113:141–147

    Article  Google Scholar 

  47. Cui GL, Syversen U, Zhao CM, Chen D, Waldum HL (2001) Long-term omeprazole treatment suppresses body weight gain and bone mineralization in young male rats. Scand J Gastroenterol 36:1011–1015

    Article  CAS  PubMed  Google Scholar 

  48. Kassarjian Z, Russell RM (1989) Hypochlorhydria: a factor in nutrition. Annu Rev Nutr 9:271–285

    Article  CAS  PubMed  Google Scholar 

  49. Kuipers EJ, Grool TA (2001) The dynamics of gastritis. Curr Gastroenterol Rep 3:509–515

    Article  CAS  PubMed  Google Scholar 

  50. Sipponen P, Härkönen M (2010) Hypochlorhydric stomach: a risk condition for calcium malabsorption and osteoporosis? Scand J Gastroenterol 45:133–138

    Article  CAS  PubMed  Google Scholar 

  51. Mullin JM, Gabello M, Murray LJ, Farrell CP, Bellows J, Wolov KR, Kearney KR, Rudolph D, Thornton JJ (2009) Proton pump inhibitors: actions and reactions. Drug Discov Today 14:647–660

    Article  CAS  PubMed  Google Scholar 

  52. Wolfe MM, Sachs G (2000) Acid suppression: optimizing therapy for gastroduodenal ulcer healing, gastroesophageal reflux disease, and stress-related erosive syndrome. Gastroenterology 118:S9–31

    Article  CAS  PubMed  Google Scholar 

  53. Madanick RD (2011) Proton pump inhibitor side effects and drug interactions: much ado about nothing? Cleve Clin J Med 78:39–49

    Article  PubMed  Google Scholar 

  54. Sheen E, Triadafilopoulos G (2011) Adverse effects of long-term proton pump inhibitor therapy. Dig Dis Sci 56:931–950

    Article  CAS  PubMed  Google Scholar 

  55. Yu EW, Blackwell T, Ensrud KE, Hillier TA, Lane NE, Orwoll E, Bauer DC (2008) Acid-suppressive medications and risk of bone loss and fracture in older adults. Calcif Tissue Int 83:251–259

    Article  CAS  PubMed  Google Scholar 

  56. Gray SL, LaCroix AZ, Larson J, Robbins J, Cauley JA, Manson JE, Chen Z (2010) Proton pump inhibitor use, hip fracture, and change in bone mineral density in postmenopausal women: results from the Women’s Health Initiative. Arch Intern Med 170:765–771

    Article  PubMed  Google Scholar 

  57. Targownik LE, Lix LM, Leung S, Leslie WD (2010) Proton-pump inhibitor use is not associated with osteoporosis or accelerated bone mineral density loss. Gastroenterology 138:896–904

    Article  CAS  PubMed  Google Scholar 

  58. Yang YX, Lewis JD, Epstein S, Metz DC (2006) Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA 296:2947–2953

    Article  CAS  PubMed  Google Scholar 

  59. Vestergaard P, Rejnmark L, Mosekilde L (2006) Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int 79:76–83

    Article  CAS  PubMed  Google Scholar 

  60. Corley DA, Kubo A, Zhao W, Quesenberry C (2010) Proton pump inhibitors and histamine-2 receptor antagonists are associated with hip fractures among at-risk patients. Gastroenterology 139:93–101

    Article  PubMed  Google Scholar 

  61. Yu EW, Bauer SR, Bain PA, Bauer DC (2011) Proton pump inhibitors and risk of fractures: a meta-analysis of 11 international studies. Am J Med 124:519–526

    Article  CAS  PubMed  Google Scholar 

  62. Khalili H, Huang ES, Jacobson BC, Camargo CA Jr, Feskanich D, Chan AT (2012) Use of proton pump inhibitors and risk of hip fracture in relation to dietary and lifestyle factors: a prospective cohort study. BMJ 344:e372. doi:10.1136/bmj.e372

    Article  PubMed  Google Scholar 

  63. Fraser LA, Leslie WD, Targownik LE, Papaioannou A, Adachi JD, CaMos Research Group (2013) The effect of proton pump inhibitors on fracture risk: report from the Canadian Multicenter Osteoporosis Study. Osteoporos Int. doi:10.1007/s00198-012-2112-9

  64. Kwok CS, Yeong JK, Loke YK (2011) Meta-analysis: risk of fractures with acid-suppressing medication. Bone 48:768–776

    Article  CAS  PubMed  Google Scholar 

  65. Thomson AB, Sauve MD, Kassam N, Kamitakahara H (2010) Safety of the long-term use of proton pump inhibitors. World J Gastroenterol 16:2323–2330

    Article  CAS  PubMed  Google Scholar 

  66. Gertz BJ, Holland SD, Kline WF, Matuszewski BK, Freeman A, Quan H, Lasseter KC, Mucklow JC, Porras AG (1995) Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther 58:288–298

    Article  CAS  PubMed  Google Scholar 

  67. Abrahamsen B, Eiken P, Eastell R (2011) Proton pump inhibitor use and the antifracture efficacy of alendronate. Arch Intern Med 171:998–1004

    PubMed  Google Scholar 

  68. de Vries F, Cooper AL, Cockle SM, van Staa TP, Cooper C (2009) Fracture risk in patients receiving acid-suppressant medication alone and in combination with bisphosphonates. Osteoporos Int 20:1989–1998

    Article  CAS  PubMed  Google Scholar 

  69. Roux C, Goldstein JL, Zhou X, Klemes A, Lindsay R (2012) Vertebral fracture efficacy during risedronate therapy in patients using proton pump inhibitors. Osteoporos Int 23:277–284

    Article  CAS  PubMed  Google Scholar 

  70. FDA. http://www.fda.gov/safety/medwatch/safetyinformation/safetyalertsforhumanmedicalproducts/ucm213321.htm. Accessed 6 January 2013

  71. Tuukkanen J, Väänänen HK (1986) Omeprazole, a specific inhibitor of H+−K+-ATPase, inhibits bone resorption in vitro. Calcif Tissue Int 38:123–125

    Article  CAS  PubMed  Google Scholar 

  72. Mattsson JP, Väänänen K, Wallmark B, Lorentzon P (1991) Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases. Biochim Biophys Acta 1065:261–268

    Article  CAS  PubMed  Google Scholar 

  73. Mizunashi K, Furukawa Y, Katano K, Abe K (1993) Effect of omeprazole, an inhibitor of H+, K(+)-ATPase, on bone resorption in humans. Calcif Tissue Int 53:21–25

    Article  CAS  PubMed  Google Scholar 

  74. Sharara AI, El-Halabi MM, Ghaith OA, Habib RH, Mansour NM, Malli A, El Hajj-Fuleihan G (2012) Proton pump inhibitors have no measurable effect on calcium and bone metabolism in healthy young males: a prospective matched controlled study. Metabolism. doi:10.1016/j.metabol.2012.09.011

  75. Insogna K (2009) The effect of proton pump-inhibiting drugs on mineral metabolism. Am J Gastroenterol 104:S2–4

    Article  CAS  PubMed  Google Scholar 

  76. O’Connell MB, Madden DM, Murray AM, Heaney RP, Kerzner LJ (2005) Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover trial. Am J Med 118:778–781

    Article  PubMed  Google Scholar 

  77. Recker RR (1985) Calcium absorption and achlorhydria. N Engl J Med 313:70–73

    Article  CAS  PubMed  Google Scholar 

  78. Graziani G, Como G, Badalamenti S, Finazzi S, Malesci A, Gallieni M, Brancaccio D, Ponticelli C (1995) Effect of gastric acid secretion on intestinal phosphate and calcium absorption in normal subjects. Nephrol Dial Transplant 10:1376–1380

    CAS  PubMed  Google Scholar 

  79. Hardy P, Sechet A, Hottelart C, Oprisiu R, Abighanem O, Said S, Rasombololona M, Brazier M, Moriniere P, Achard JM, Pruna A, Fournier A (1998) Inhibition of gastric secretion by omeprazole and efficiency of calcium carbonate on the control of hyperphosphatemia in patients on chronic hemodialysis. Artif Organs 22:569–573

    Article  CAS  PubMed  Google Scholar 

  80. Graziani G, Badalamenti S, Como G, Gallieni M, Finazzi S, Angelini C, Brancaccio D, Ponticelli C (2002) Calcium and phosphate plasma levels in dialysis patients after dietary Ca–P overload. Role of gastric acid secretion. Nephron 91:474–479

    Article  CAS  PubMed  Google Scholar 

  81. Serfaty-Lacrosniere C, Wood RJ, Voytko D, Saltzman JR, Pedrosa M, Sepe TE, Russell RR (1995) Hypochlorhydria from short-term omeprazole treatment does not inhibit intestinal absorption of calcium, phosphorus, magnesium or zinc from food in humans. J Am Coll Nutr 14:364–368

    Article  CAS  PubMed  Google Scholar 

  82. Hansen KE, Jones AN, Lindstrom MJ, Davis LA, Ziegler TE, Penniston KL, Alvig AL, Shafer MM (2010) Do proton pump inhibitors decrease calcium absorption? J Bone Miner Res 25:2786–2795

    Article  PubMed  Google Scholar 

  83. Imamura M, Yamauchi H, Fukushima K, Sasaki I, Ouchi A (1988) Bone metabolism following gastric surgery: microdensitometry and single-photon absorptiometry. Tohoku J Exp Med 156:237–249

    Article  CAS  PubMed  Google Scholar 

  84. Resch H, Pietschmann P, Pernecker B, Krexner E, Willvonseder R (1992) The influence of partial gastrectomy on biochemical parameters of bone metabolism and bone density. Clin Investig 70:426–429

    Article  CAS  PubMed  Google Scholar 

  85. Inoue K, Shiomi K, Higashide S, Kan N, Nio Y, Tobe T, Shigeno C, Konishi J, Okumura H, Yamamuro T et al (1992) Metabolic bone disease following gastrectomy: assessment by dual energy X-ray absorptiometry. Br J Surg 79:321–324

    Article  CAS  PubMed  Google Scholar 

  86. Mellström D, Johansson C, Johnell O, Lindstedt G, Lundberg PA, Obrant K, Schöön IM, Toss G, Ytterberg BO (1993) Osteoporosis, metabolic aberrations, and increased risk for vertebral fractures after partial gastrectomy. Calcif Tissue Int 53:370–377

    PubMed  Google Scholar 

  87. Zittel TT, Zeeb B, Maier GW, Kaiser GW, Zwirner M, Liebich H, Starlinger M, Becker HD (1997) High prevalence of bone disorders after gastrectomy. Am J Surg 174:431–438

    Article  CAS  PubMed  Google Scholar 

  88. Schmiedl A, Schwille PO, Stühler C, Göhl J, Rümenapf G (1999) Low bone mineral density after total gastrectomy in males: a preliminary report emphasizing the possible significance of urinary net acid excretion, serum gastrin and phosphorus. Clin Chem Lab Med 37:739–744

    Article  CAS  PubMed  Google Scholar 

  89. Adachi Y, Shiota E, Matsumata T, Iso Y, Yoh R, Kitano S (2000) Osteoporosis after gastrectomy: bone mineral density of lumbar spine assessed by dual-energy X-ray absorptiometry. Calcif Tissue Int 66:119–122

    Article  CAS  PubMed  Google Scholar 

  90. Heiskanen JT, Kröger H, Pääkkönen M, Parviainen MT, Lamberg-Allardt C, Alhava E (2001) Bone mineral metabolism after total gastrectomy. Bone 28:123–127

    Article  CAS  PubMed  Google Scholar 

  91. Lim JS, Kim SB, Bang HY, Cheon GJ, Lee JI (2007) High prevalence of osteoporosis in patients with gastric adenocarcinoma following gastrectomy. World J Gastroenterol 13:6492–6497

    Article  CAS  PubMed  Google Scholar 

  92. Bisballe S, Eriksen EF, Melsen F, Mosekilde L, Sørensen OH, Hessov I (1991) Osteopenia and osteomalacia after gastrectomy: interrelations between biochemical markers of bone remodelling, vitamin D metabolites, and bone histomorphometry. Gut 32:1303–1307

    Article  CAS  PubMed  Google Scholar 

  93. Efstathiadou Z, Bitsis S, Tsatsoulis A (1999) Gastrectomy and osteomalacia: an association not to be forgotten. Horm Res 52:295–297

    Article  CAS  PubMed  Google Scholar 

  94. Straub DA (2007) Calcium supplementation in clinical practice: a review of forms, doses, and indications. Nutr Clin Pract 22:286–296

    Article  PubMed  Google Scholar 

  95. Heller HJ, Stewart A, Haynes S, Pak CY (1999) Pharmacokinetics of calcium absorption from two commercial calcium supplements. J Clin Pharmacol 39:1151–1154

    CAS  PubMed  Google Scholar 

  96. Heaney RP, Dowell MS, Bierman J, Hale CA, Bendich A (2001) Absorbability and cost effectiveness in calcium supplementation. J Am Coll Nutr 20:239–246

    Article  CAS  PubMed  Google Scholar 

  97. Kenny AM, Prestwood KM, Biskup B, Robbins B, Zayas E, Kleppinger A, Burleson JA, Raisz LG (2004) Comparison of the effects of calcium loading with calcium citrate or calcium carbonate on bone turnover in postmenopausal women. Osteoporos Int 15:290–294

    Article  CAS  PubMed  Google Scholar 

  98. Targownik LE, Lix LM, Metge CJ, Prior HJ, Leung S, Leslie WD (2008) Use of proton pump inhibitors and risk of osteoporosis-related fractures. CMAJ 179:319–326

    Article  PubMed  Google Scholar 

  99. Roux C, Briot K, Gossec L, Kolta S, Blenk T, Felsenberg D, Reid DM, Eastell R, Glüer CC (2009) Increase in vertebral fracture risk in postmenopausal women using omeprazole. Calcif Tissue Int 84:13–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michelle Morales, Scripps Mercy Hospital, San Diego, CA, for critically reading the manuscript. Our own work was funded by a research grant from the Deutsche Forschungsgesellschaft (AM 103/14-1/2).

Conflicts of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schinke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, J., Schinke, T. The role of the gastrointestinal tract in calcium homeostasis and bone remodeling. Osteoporos Int 24, 2737–2748 (2013). https://doi.org/10.1007/s00198-013-2335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2335-4

Keywords

Navigation