Skip to main content

Advertisement

Log in

Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density?

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Hip geometry measurements of outer diameter and buckling ratio at the intertrochanter and shaft of the hip dual energy X-ray absorptiometry (DXA) scan predicted incident hip fracture in postmenopausal women. These associations, independent of age, body size, clinical risk factors, and conventional areal bone mineral density, suggest hip geometry plays a role in fracture etiology and may aid in improving identification of older women at high fracture risk.

Introduction

This study examined whether hip geometry parameters predicted hip fracture independent of body size, clinical risk factors, and conventional femoral neck bone mineral density (aBMD) and whether summary factors could be identified to predict hip fracture.

Methods

We studied 10,290 postmenopausal women from the Women's Health Initiative. Eight thousand eight hundred forty-three remained fracture free during follow-up to 11 years of follow-up, while 147 fractured their hip, and 1,300 had other clinical fractures. Hip structural analysis software measured bone cross-sectional area, outer diameter, section modulus, average cortical thickness, and buckling ratio on archived DXA scans in three hip regions: narrow neck, intertrochanter, and shaft. Hazard ratios were estimated using Cox proportional hazards models for individual parameters and for composite factors extracted from principal components analysis from all 15 parameters.

Results

After adjustment for age, body size, clinical risk factors, and aBMD, intertrochanter and shaft outer diameter measurements remained independent predictors of hip fracture with hazard ratios for a one standard deviation increase of 1.61 (95% confidence interval (CI), 1.25–2.08) for the intertrochanter and 1.36 (95% CI, 1.06–1.76) for the shaft. Average buckling ratios also independently predicted incident hip fracture with hazard ratios of 1.43 (95% CI, 1.10–1.87) at the intertrochanter and 1.24 (95% CI, 1.00–1.55) at the shaft. Although two composite factors were extracted from principal components analysis, neither was superior to these individual measurements at predicting incident hip fracture.

Conclusions

Two hip geometry parameters, intertrochanter outer diameter and buckling ratio, predict incident hip fracture after accounting for clinical risk factors and aBMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Department of Health and Human Services (2004) Bone health and osteoporosis: a report of the surgeon general. Office of the Surgeon General, Rockville, MD

    Google Scholar 

  2. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  3. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  4. Seeman E (2008) Bone quality: the material and structural basis of bone strength. J Bone Miner Metab 26:1–8

    Article  PubMed  Google Scholar 

  5. U.S. Department of Health and Human Services (2000) Healthy people 2010. Available via http://www.healthypeople.gov/publications. Accessed 3 Feb 2009

  6. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O'Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  7. Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904

    Article  PubMed  Google Scholar 

  8. Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, Pols HA (2007) Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res 22:1781–1790

    Article  PubMed  Google Scholar 

  9. (1998) Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control Clin Trials 19:61-109

  10. Curb JD, McTiernan A, Heckbert SR, Kooperberg C, Stanford J, Nevitt M, Johnson KC, Proulx-Burns L, Pastore L, Criqui M, Daugherty S (2003) Outcomes ascertainment and adjudication methods in the Women's Health Initiative. Ann Epidemiol 13:S122–S128

    Article  PubMed  Google Scholar 

  11. Hays J, Hunt JR, Hubbell FA, Anderson GL, Limacher M, Allen C, Rossouw JE (2003) The Women's Health Initiative recruitment methods and results. Ann Epidemiol 13:S18–S77

    Article  PubMed  Google Scholar 

  12. Martin RB, Burr DB (1984) Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech 17:195–201

    Article  CAS  PubMed  Google Scholar 

  13. Robbins J, Aragaki AK, Kooperberg C, Watts N, Wactawski-Wende J, Jackson RD, LeBoff MS, Lewis CE, Chen Z, Stefanick ML, Cauley J (2007) Factors associated with 5-year risk of hip fracture in postmenopausal women. JAMA 298:2389–2398

    Article  CAS  PubMed  Google Scholar 

  14. Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304

    Article  CAS  PubMed  Google Scholar 

  15. Feik SA, Thomas CD, Bruns R, Clement JG (2000) Regional variations in cortical modeling in the femoral mid-shaft: sex and age differences. Am J Phys Anthropol 112:191–205

    Article  CAS  PubMed  Google Scholar 

  16. Martin RB, Atkinson PJ (1977) Age and sex-related changes in the structure and strength of the human femoral shaft. J Biomech 10:223–231

    Article  CAS  PubMed  Google Scholar 

  17. Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135

    Article  PubMed  Google Scholar 

  18. Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging. Science 217:945–948

    Article  CAS  PubMed  Google Scholar 

  19. Ruff CB, Hayes WC (1988) Sex differences in age-related remodeling of the femur and tibia. J Orthop Res 6:886–896

    Article  CAS  PubMed  Google Scholar 

  20. Sievanen H, Uusi-Rasi K, Heinonen A, Oja P, Vuori I (1999) Disproportionate, age-related bone loss in long bone ends: a structural analysis based on dual energy X-ray absorptiometry. Osteoporos Int 10:295–302

    Article  CAS  PubMed  Google Scholar 

  21. Smith RW Jr, Walker RR (1964) Femoral expansion in aging women: implications for osteoporosis and fractures. Science 145:156–157

    Article  PubMed  Google Scholar 

  22. Stein MS, Thomas CD, Feik SA, Wark JD, Clement JG (1998) Bone size and mechanics at the femoral diaphysis across age and sex. J Biomech 31:1101–1110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Short list of WHI investigators

Program Office: (National Heart, Lung, and Blood Institute, Bethesda, Maryland) Elizabeth Nabel, Jacques Rossouw, Shari Ludlam, Linda Pottern, Joan McGowan, Leslie Ford, and Nancy Geller.

Clinical Coordinating Center: (Fred Hutchinson Cancer Research Center, Seattle, WA) Ross Prentice, Garnet Anderson, Andrea LaCroix, Charles L. Kooperberg, Ruth E. Patterson, Anne McTiernan; (Wake Forest University School of Medicine, Winston-Salem, NC) Sally Shumaker; (Medical Research Labs, Highland Heights, KY) Evan Stein; (University of California at San Francisco, San Francisco, CA) Steven Cummings.

Clinical Centers: (Albert Einstein College of Medicine, Bronx, NY) Sylvia Wassertheil-Smoller; (Baylor College of Medicine, Houston, TX) Jennifer Hays; (Brigham and Women's Hospital, Harvard Medical School, Boston, MA) JoAnn Manson; (Brown University, Providence, RI) Annlouise R. Assaf; (Emory University, Atlanta, GA) Lawrence Phillips; (Fred Hutchinson Cancer Research Center, Seattle, WA) Shirley Beresford; (George Washington University Medical Center, Washington, DC) Judith Hsia; (Los Angeles Biomedical Research Institute at Harbor- UCLA Medical Center, Torrance, CA) Rowan Chlebowski; (Kaiser Permanente Center for Health Research, Portland, OR) Evelyn Whitlock; (Kaiser Permanente Division of Research, Oakland, CA) Bette Caan; (Medical College of Wisconsin, Milwaukee, WI) Jane Morley Kotchen; (MedStar Research Institute/Howard University, Washington, DC) Barbara V. Howard; (Northwestern University, Chicago/Evanston, IL) Linda Van Horn; (Rush Medical Center, Chicago, IL) Henry Black; (Stanford Prevention Research Center, Stanford, CA) Marcia L. Stefanick; (State University of New York at Stony Brook, Stony Brook, NY) Dorothy Lane; (The Ohio State University, Columbus, OH) Rebecca Jackson; (University of Alabama at Birmingham, Birmingham, AL) Cora E. Lewis; (University of Arizona, Tucson/Phoenix, AZ) Tamsen Bassford; (University at Buffalo, Buffalo, NY) Jean Wactawski-Wende; (University of California at Davis, Sacramento, CA) John Robbins; (University of California at Irvine, CA) F. Allan Hubbell; (University of California at Los Angeles, Los Angeles, CA) Howard Judd; (University of California at San Diego, LaJolla/Chula Vista, CA) Robert D. Langer; (University of Cincinnati, Cincinnati, OH) Margery Gass; (University of Florida, Gainesville/Jacksonville, FL) Marian Limacher; (University of Hawaii, Honolulu, HI) David Curb; (University of Iowa, Iowa City/Davenport, IA) Robert Wallace; (University of Massachusetts/Fallon Clinic, Worcester, MA) Judith Ockene; (University of Medicine and Dentistry of New Jersey, Newark, NJ) Norman Lasser; (University of Miami, Miami, FL) Mary Jo O’Sullivan; (University of Minnesota, Minneapolis, MN) Karen Margolis; (University of Nevada, Reno, NV) Robert Brunner; (University of North Carolina, Chapel Hill, NC) Gerardo Heiss; (University of Pittsburgh, Pittsburgh, PA) Lewis Kuller; (University of Tennessee, Memphis, TN) Karen C. Johnson; (University of Texas Health Science Center, San Antonio, TX) Robert Brzyski; (University of Wisconsin, Madison, WI) Gloria E. Sarto; (Wake Forest University School of Medicine, Winston-Salem, NC) Denise Bonds; (Wayne State University School of Medicine/Hutzel Hospital, Detroit, MI) Susan Hendrix.

Source of funding: Supported by a grant from the National Institute on Arthritis and Musculoskeletal Diseases R01 AR049411. The Women's Health Initiative is funded by the National Heart Lung and Blood Institute of the US Department of Health and Human Services.

Conflicts of interest

The HSA software used in the study was licensed to Hologic by Johns Hopkins University. No other conflicts of interests are reported.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Z. LaCroix or Z. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaCroix, A.Z., Beck, T.J., Cauley, J.A. et al. Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density?. Osteoporos Int 21, 919–929 (2010). https://doi.org/10.1007/s00198-009-1056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1056-1

Keywords

Navigation