Skip to main content

Advertisement

Log in

Familial aggregation of bone mineral density and bone mineral content in a Chinese population

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Familial aggregation of bone mineral density (BMD) and bone mineral content (BMC) has been shown in twin and familial studies, but most sample sizes were small. We here report a large familial aggregation study in a Chinese population. A total of 13,973 siblings aged 25–64 years from 3,882 families were enrolled from Anhui, China. We assessed the whole-body, hip and lumbar spine BMD and BMC by dual-energy X-ray absorptiometry (DXA). Intra-class correlation coefficients of BMD and BMC between siblings varied among different skeletal sites and between different age groups of male sib-pairs and premenopausal and postmenopausal female sib-pairs, with a range of 0.228 to 0.397. The sibling recurrence risk ratio (λs) of osteoporosis was 2.6 in our population. We also evaluated the joint association of the BMD values of the first siblings and the second siblings with the risk of low BMD (defined as less than the 10th percentile of the same group population) of their younger siblings. If both the first and second siblings’ BMDs were in the lowest tertile, the odd ratios (ORs) of low BMD in their subsequent siblings were 8.32 [95% confidence interval (CI) 5.59–12.39)], 8.71 (95% CI 5.74–13.22) and 5.90 (95% CI 3.57–9.76) for total body, total hip and lumbar spine, respectively. This study demonstrates a significant familial aggregation of BMD and BMC in a large sample of rural Chinese adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wehren LE (2003) The epidemiology of osteoporosis and fractures in geriatric medicine. Clin Geriatr Med 19:245–258

    Article  PubMed  Google Scholar 

  2. Wasnich RD, Ross PD, Heilbrun LK, Vogel JM (1985) Prediction of postmenopausal fracture risk with use of bone mineral measurements. Am J Obstet Gynecol 153:745–751

    PubMed  Google Scholar 

  3. Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233

    PubMed  Google Scholar 

  4. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  PubMed  Google Scholar 

  5. Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr (1973) Genetic factors in determining bone mass. J Clin Invest 52:2800–2808

    PubMed  Google Scholar 

  6. Dequeker J, Nijs J, Verstraeten A, Geusens P, Gevers G (1987) Genetic determinants of bone mineral content at the spine and radius: a twin study. Bone 8:207–209

    Article  PubMed  Google Scholar 

  7. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S (1987) Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80:706–710

    PubMed  Google Scholar 

  8. Christian JC, Yu PL, Slemenda CW, Johnston CC Jr (1989) Heritability of bone mass: a longitudinal study in aging male twins. Am J Hum Genet 44:429–433

    PubMed  Google Scholar 

  9. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr (1991) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6:561–567

    PubMed  Google Scholar 

  10. Seeman E, Hopper JL, Bach LA, Cooper ME, Parkinson E, McKay J, Jerums G (1989) Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 320:554–558

    PubMed  Google Scholar 

  11. Evans RA, Marel GM, Lancaster EK, Kos S, Evans M, Wong SY (1988) Bone mass is low in relatives of osteoporotic patients. Ann Intern Med 109:870-873

    PubMed  Google Scholar 

  12. Krall EA, Dawson-Hughes B (1993) Heritable and life-style determinants of bone mineral density. J Bone Miner Res 8:1–9

    PubMed  Google Scholar 

  13. Soroko SB, Barrett-Connor E, Edelstein SL, Kritz-Silverstein D (1994) Family history of osteoporosis and bone mineral density at the axial skeleton: the Rancho Bernardo Study. J Bone Miner Res 9:761–769

    PubMed  Google Scholar 

  14. McKay HA, Bailey DA, Wilkinson AA, Houston CS (1994) Familial comparison of bone mineral density at the proximal femur and lumbar spine. Bone Miner 24:95–107

    PubMed  Google Scholar 

  15. Gueguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G (1995) Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 10:2017–2022

    PubMed  Google Scholar 

  16. Videman T, Batti MC, Gibbons LE, Vanninen E, Kaprio J, Koskenvuo M (2002) The roles of adulthood behavioural factors and familial influences in bone density among men. Ann Med 34:434–443

    Article  PubMed  Google Scholar 

  17. Duncan EL, Cardon LR, Sinsheimer JS, Wass JA, Brown MA (2003) Site and gender specificity of inheritance of bone mineral density. J Bone Miner Res 18:1531–1538

    PubMed  Google Scholar 

  18. Takeshita T, Yamagata Z, Iijima S, Nakamura T, Ouchi Y, Orimo H, Asaka A (1992) Genetic and environmental factors of bone mineral density indicated in Japanese twins. Gerontology 38 [Suppl 1]:43–49

  19. Liu PY, Qin YJ, Zhou Q, Recker RR, Deng HW (2004) Complex segregation analyses of bone mineral density in Chinese. Ann Hum Genet 68:154–164

    Article  PubMed  Google Scholar 

  20. Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46:222–228

    PubMed  Google Scholar 

  21. Srivastava MS (1993) Estimation of the intraclass correlation coefficient. Ann Hum Genet 57:159–165

    PubMed  Google Scholar 

  22. Smith CA (1957) On the estimation of intra-class correlation. Ann Hum Genet 21:363–373

    PubMed  Google Scholar 

  23. Wu XP, Liao EY, Zhang H, Dai RC, Shan PF, Cao XZ, Liu SP, Jiang Y (2004) Determination of age-specific bone mineral density and comparison of diagnosis and prevalence of primary osteoporosis in Chinese women based on both Chinese and World Health Organization criteria. J Bone Miner Metab 22:382–391

    PubMed  Google Scholar 

  24. Yeh LR, Chen CK, Lai PH (2004) Normal bone mineral density in anteroposterior, lateral spine and hip of Chinese men in Taiwan: effect of age change, body weight and height. J Chin Med Assoc 67:287–295

    PubMed  Google Scholar 

  25. Hopper JL, Green RM, Nowson CA, Young D, Sherwin AJ, Kaymakci B, Larkins RG, Wark JD (1998) Genetic, common environment, and individual specific components of variance for bone mineral density in 10- to 26-year-old females: a twin study. Am J Epidemiol 147:17–29

    PubMed  Google Scholar 

  26. Judex S, Garman R, Squire M, Donahue LR, Rubin C (2004) Genetically based influences on the site-specific regulation of trabecular and cortical bone morphology. J Bone Miner Res 19:600–606

    PubMed  Google Scholar 

  27. Judex S, Garman R, Squire M, Busa B, Donahue LR, Rubin C (2004) Genetically linked site-specificity of disuse osteoporosis. J Bone Miner Res 19:607–613

    PubMed  Google Scholar 

  28. Livshits G, Deng HW, Nguyen TV, Yakovenko K, Recker RR, Eisman JA (2004) Genetics of bone mineral density: evidence for a major pleiotropic effect from an intercontinental study. J Bone Miner Res 19:914–923

    PubMed  Google Scholar 

  29. Zhao HY, Liu JM, Ning G, Zhang LZ, Xu MY, Chen JL (2004) [The relationship between body composition measured with bioelectric impedance analysis and bone mass in females]. Zhonghua Nei Ke Za Zhi 43:506–509

    PubMed  Google Scholar 

  30. Afghani A, Abbott AV, Wiswell RA, Jaque SV, Gleckner C, Schroeder ET, Johnson CA (2004) Bone mineral density in Hispanic women: role of aerobic capacity, fat-free mass, and adiposity. Int J Sports Med 25:384–390

    Article  PubMed  Google Scholar 

  31. Rhee EJ, Oh KW, Lee WY, Kim SW, Oh ES, Baek KH, Kang MI, Park CY, Choi MG, Yoo HJ, Park SW (2004) Age, body mass index, current smoking history, and serum insulin-like growth factor-I levels associated with bone mineral density in middle-aged Korean men. J Bone Miner Metab 22:392–398

    Article  PubMed  Google Scholar 

  32. Kanis JA, Johnell O, Oden A, Johansson H, De Laet C, Eisman JA, Fujiwara S, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Institutes of Arthritis and Musculoskeletal and Skin Disease (R01 AR045651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Hsu, YH., Terwedow, H. et al. Familial aggregation of bone mineral density and bone mineral content in a Chinese population. Osteoporos Int 16, 1917–1923 (2005). https://doi.org/10.1007/s00198-005-1962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-1962-9

Keywords

Navigation