Skip to main content
Log in

Longitudinal progression of fracture prevalence through a population of postmenopausal women with osteoporosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Aim: To determine the longitudinal progression of fractures through a population of osteoporotic women with no existing vertebral fractures. Methods: The probability of having one or more vertebral fractures in the next year given a current status of 0–13 existing vertebral fractures was estimated using data from control patients of an osteoporosis clinical trial program. Fracture probabilities were used to form a transition matrix that models the change in fracture state from one year to the next. A Markov model was used to show the distribution of fracture prevalence over time for a population of women with osteoporosis but, initially, with no existing vertebral fractures. Results: An osteoporotic woman without existing vertebral fractures has a 7.7% chance (95% CI, 5.8% to 9.9%) of having a vertebral fracture within 1 year. After 5 years, 33% (95% CI, 25% to 41%) will have developed vertebral fractures, of which 11% (95% CI, 8% to 16%) will have ≥2 fractures. After 10 years, 55% (95% CI, 44% to 65%) will have developed vertebral fractures, of which 29% (95% CI, 22% 37%) will have ≥2 fractures. Each 1% absolute reduction in the annual first-fracture risk corresponds to an approximate 4% reduction in the 5-year fracture incidence. Therefore, reducing the risk of first fracture from 8% to 2% reduces the 5-year fracture incidence from ~34% to ~10%. Conclusions: Fracture prevalence rapidly increases over time in a population of osteoporotic women despite treatment with calcium and vitamin D supplements. Identifying and treating patients at risk of fracture, but who have not yet sustained a fracture, will substantially reduce the long-term burden of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Riggs BL, Melton LJ 3rd (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17[Suppl 5]:505S–511S

  2. Hasserius R, Karlsson MK, Nilsson BE, Redlund-Johnell I, Johnell O (2003) Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int 14(1):61–68

    Article  CAS  PubMed  Google Scholar 

  3. Chesnut CH 3rd, Bell NH, Clark GS, Drinkwater BL, English SC, Johnson CC Jr, Notelovitz M, Rosen C, Cain DF, Flessland KA, Mallinak NJ (1997) Hormone replacement therapy in postmenopausal women: urinary N-telopeptide of type I collagen monitors therapeutic effect and predicts response of bone mineral density. Am J Med 102(1):29–37

    Article  CAS  PubMed  Google Scholar 

  4. Lyles KW, Gold DT, Shipp KM, Pieper CF, Martinez S, Mulhausen PL (1993) Association of osteoporotic vertebral compression fractures with impaired functional status. Am J Med 94(6):595–601

    Article  CAS  PubMed  Google Scholar 

  5. Gold DT (1996) The clinical impact of vertebral fractures: quality of life in women with osteoporosis. Bone 18[Suppl 3]:185S–189S

  6. Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR (1999) Vertebral fractures and mortality in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 159(11):1215–1220

    Article  CAS  PubMed  Google Scholar 

  7. Ismail AA, O’Neill TW, Cooper C, Finn JD, Bhalla AK, Cannata JB, Delmas P, Falch JA, Felsch B, Hoszowski K, Johnell O, Diaz-Lopez JB, Lopez Vaz A, Marchand F, Raspe H, Reid DM, Todd C, Weber K, Woolf A, Reeve J, Silman AJ (1998) Mortality associated with vertebral deformity in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 8(3):291–297

    Article  CAS  PubMed  Google Scholar 

  8. Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129(5):1000–1011

    PubMed  Google Scholar 

  9. Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL (1992) Perspective. How many women have osteoporosis? J Bone Miner Res 7(9):1005–1010

    PubMed  Google Scholar 

  10. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3rd (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7(2):221–227

    CAS  PubMed  Google Scholar 

  11. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, Licata A, Benhamou L, Geusens P, Flowers K, Stracke H, Seeman E (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285(3):320–323

    Article  CAS  PubMed  Google Scholar 

  12. Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114(11):919–923

    CAS  PubMed  Google Scholar 

  13. Doherty DA, Sanders KM, Kotowicz MA, Prince RL (2001) Lifetime and five-year age-specific risks of first and subsequent osteoporotic fractures in postmenopausal women. Osteoporos Int 12(1):16–23

    Article  CAS  PubMed  Google Scholar 

  14. Reginster J, Minne HW, Sorensen OH, Hooper M, Roux C, Brandi ML, Lund B, Ethgen D, Pack S, Roumagnac I, Eastell R (2000) Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 11(1):83–91

    Article  CAS  PubMed  Google Scholar 

  15. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, Chesnut CH 3rd, Brown J, Eriksen EF, Hoseyni MS, Axelrod DW, Miller PD (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 282(14):1344–1352

    Article  CAS  PubMed  Google Scholar 

  16. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, Adami S, Fogelman I, Diamond T, Eastell R, Meunier PJ, Reginster JY (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 344(5):333–340

    Article  CAS  PubMed  Google Scholar 

  17. Black DM, Arden NK, Palermo L, Pearson J,Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14(5):821–828

    CAS  PubMed  Google Scholar 

  18. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15(4):721–739

    CAS  PubMed  Google Scholar 

  19. Heaney RP, Zizic TM, Fogelman I, Olszynski WP, Geusens P, Kasibhatla C, Alsayed N, Isaia G, Davie MW, Chesnut CH 3rd (2002) Risedronate reduces the risk of first vertebral fracture in osteoporotic women. Osteoporos Int 13(6):501–505

    Article  CAS  PubMed  Google Scholar 

  20. Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8(10):1227–1233

    PubMed  Google Scholar 

  21. Gardsell P, Johnell O, Nilsson BE, Gullberg B (1993) Predicting various fragility fractures in women by forearm bone densitometry: a follow-up study. Calcif Tissue Int 52(5):348–353

    CAS  PubMed  Google Scholar 

  22. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18(11):1947–1954

    PubMed  Google Scholar 

  23. Davis JW, Grove JS, Wasnich RD, Ross PD (1999) Spatial relationships between prevalent and incident spine fractures. Bone 24(3):261–264

    Article  CAS  PubMed  Google Scholar 

  24. Ross PD (1997) Clinical consequences of vertebral fractures. Am J Med 103(2A):30S–42S

    CAS  PubMed  Google Scholar 

  25. Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, Palermo L, Prineas R, Rubin SM, Scott JC, Vogt T, Wallace R, Yates AJ, LaCroix AZ (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 280(24):2077–2082

    Article  CAS  PubMed  Google Scholar 

  26. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, Christiansen C, Delmas PD, Zanchetta JR, Stakkestad J, Gluer CC, Krueger K, Cohen FJ, Eckert S, Ensrud KE, Avioli LV, Lips P, Cummings SR (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA 282(7):637–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding: financial support was obtained from Procter and Gamble and from Aventis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lindsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindsay, R., Pack, S. & Li, Z. Longitudinal progression of fracture prevalence through a population of postmenopausal women with osteoporosis. Osteoporos Int 16, 306–312 (2005). https://doi.org/10.1007/s00198-004-1691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1691-5

Keywords

Navigation