Skip to main content
Log in

The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Non-ideal shock tube facility effects, such as incident shock wave attenuation, can cause variations in the pressure histories seen in reflected shock wave experiments. These variations can be reduced, and in some cases eliminated, by the use of driver inserts. Driver inserts, when designed properly, act as sources of expansion waves which can counteract or compensate for gradual increases in reflected shock pressure profiles. An algorithm for the design of these inserts is provided, and example pressure measurements are presented that demonstrate the success of this approach. When these driver inserts are employed, near- ideal, constant-volume performance in reflected shock wave experiments can be achieved, even at long test times. This near-ideal behavior simplifies the interpretation of shock tube chemical kinetics experiments, particularly in experiments which are highly sensitive to temperature and pressure changes, such as measurements of ignition delay time of exothermic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mirels, H.: Boundary layer growth effects in shock tubes. In: Stollery, J.L., Gaydon, A.G., Owen, P.R. (eds.) Shock Tube Research. Proceedings of the Eighth International Shock Tube Symposium, pp. 6/2–6/30. Chapman and Hall, London (1972)

  2. Petersen E.L., Hanson R.K.: Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001). doi:10.1007/PL00004051

    Article  Google Scholar 

  3. White D.R.: Influence of diaphragm opening time on shock-tube flows. J. Fluid Mech. 4, 585–599 (1958). doi:10.1017/S0022112058000677

    Article  Google Scholar 

  4. Hickman R.S., Farrar L.C.: Behavior of burst diaphragms in shock tubes. Phys. Fluids 18, 1249–1252 (1975). doi:10.1063/1.861010

    Article  Google Scholar 

  5. Petersen, E.L.: A shock tube and diagnostics for chemistry measurements at elevated pressures with application to methane ignition. Ph.D. Thesis. Department of Mechanical Engineering, Stanford University (1998)

  6. Pang G.A., Davidson D.F., Hanson R.K.: Experimental study and modeling of shock tube ignition delay times for hydrogen–oxygen–argon mixtures at low temperatures. Proc. Combust. Inst. 32, 181–188 (2009). doi:10.1016/j.proci.2008.06.014

    Article  Google Scholar 

  7. Li H., Owens Z., Davidson D.F., Hanson R.K.: A simple reactive gas dynamic model for the computation of gas temperature and species concentrations behind reflected shock waves. Int. J. Chem. Kinet. 40, 189–198 (2008). doi:10.1002/kin.20305

    Article  Google Scholar 

  8. Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eitneer, B. Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.V., Qin, Z.: Available at: http://www.me.berkeley.edu/gri-mech, Accessed 3 February 2009

  9. Dumitrescu L.Z.: An attenuation-free shock tube. Phys. Fluids 15, 207–209 (1972). doi:10.1063/1.1693742

    Article  Google Scholar 

  10. Herbon, J.T.: Shock tube measurements of CH3 + O2 kinetics and the heat of formation of the OH radical. Ph.D. Thesis. Department of Mechanical Engineering, Stanford Unversity (2004)

  11. Oehlschlaeger M.A., Davidson D.F., Hanson R.K.: High-temperature thermal decomposition of isobutane and n-butane behind shock waves. J. Phys. Chem. A 108, 4247–4253 (2004). doi:10.1021/jp0313627

    Article  Google Scholar 

  12. Petrov R.L.: Analysis of the “tailored” contact surface region in a shock tube. J. Eng. Phys. 31, 1106–1110 (1976). doi:10.1007/BF00861401

    Article  Google Scholar 

  13. Amadio A.R., Crofton M.W., Petersen E.L.: Test-time extension behind reflected shock waves using CO2–He and C3H8–He driver mixtures. Shock Waves 16, 157–165 (2006). doi:10.1007/s00193-006-0058-6

    Article  Google Scholar 

  14. Nishida, M.: Shock Tubes. In: Handbook of Shock Waves, vol. 1, pp. 553–585. Academic, New York (2001)

  15. Hooker W.J.: Test time and contact-zone phenomena in shock-tube flow. Phys. Fluids 4, 1451–1463 (1961). doi:10.1063/1.1706243

    Article  Google Scholar 

  16. Emrich R.J., Curtis C.W.: Attenuation in the shock tube. J. Appl. Phys. 24, 360–363 (1953). doi:10.1063/1.1721279

    Article  Google Scholar 

  17. Badcock K.J.: A numerical simulation of boundary layer effects in a shock tube. Int. J. Numer. Methods Fluids 14, 1151–1171 (1992). doi:10.1002/fld.1650141003

    Article  Google Scholar 

  18. Petersen E.L., Hanson R.K.: Improved turbulent boundary-layer model for shock tubes. AIAA J. 41, 1314–1322 (2003). doi:10.2514/2.2076

    Article  Google Scholar 

  19. Alpher R.A., White D.R.: Flow in shock tubes with area change at the diaphragm section. J. Fluid Mech. 3, 457–470 (1958). doi:10.1017/S0022112058000124

    Article  Google Scholar 

  20. http://silver.neep.wisc.edu/~shock/tools/xt.html. Accessed 3 February 2009

  21. Farooq, A., Jeffries, J.B., Hanson, R.K.: Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm. Appl. Phys. B (2009). doi:10.1007/s00340-009-3446-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekai Hong.

Additional information

Communicated by F. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Z., Pang, G.A., Vasu, S.S. et al. The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves. Shock Waves 19, 113–123 (2009). https://doi.org/10.1007/s00193-009-0205-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0205-y

PACS

Navigation