Skip to main content

Advertisement

Log in

Continental mass change from GRACE over 2002–2011 and its impact on sea level

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Present-day continental mass variation as observed by space gravimetry reveals secular mass decline and accumulation. Whereas the former contributes to sea-level rise, the latter results in sea-level fall. As such, consideration of mass accumulation (rather than focussing solely on mass loss) is important for reliable overall estimates of sea-level change. Using data from the Gravity Recovery And Climate Experiment satellite mission, we quantify mass-change trends in 19 continental areas that exhibit a dominant signal. The integrated mass change within these regions is representative of the variation over the whole land areas. During the integer 9-year period of May 2002 to April 2011, GIA-adjusted mass gain and mass loss in these areas contributed, on average, to −(0.7 ± 0.4) mm/year of sea-level fall and + (1.8 ± 0.2) mm/year of sea-level rise; the net effect was + (1.1 ± 0.6) mm/year. Ice melting over Greenland, Iceland, Svalbard, the Canadian Arctic archipelago, Antarctica, Alaska and Patagonia was responsible for + (1.4±0.2) mm/year of the total balance. Hence, land-water mass accumulation compensated about 20 % of the impact of ice-melt water influx to the oceans. In order to assess the impact of geocentre motion, we converted geocentre coordinates derived from satellite laser ranging (SLR) to degree-one geopotential coefficients. We found geocentre motion to introduce small biases to mass-change and sea-level change estimates; its overall effect is + (0.1 ± 0.1) mm/year. This value, however, should be taken with care owing to questionable reliability of secular trends in SLR-derived geocentre coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antonov JI, Levitus S, Boyer TP (2005) Thermosteric sea level rise, 1955–2003. Geophys Res Lett 32: L12602. doi:10.1029/2005GL023112

    Article  Google Scholar 

  • Baur O (2012) On the computation of mass-change trends from GRACE gravity field time-series. J Geodyn. doi:10.1016/j.jog.2012.03.007

  • Baur O, Kuhn M, Featherstone WE (2009) GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J Geophys Res 114: B06407. doi:10.1029/2008JB006239

    Article  Google Scholar 

  • Baur O, Kuhn M, Featherstone WE (2012) GRACE-derived linear and non-linear secular mass variations over Greenland. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi symposium on mathematical geodesy, IAG series 137. Springer, Berlin-Heidelberg, pp 381–386

  • Bindoff NL et al (2007) Observations: oceanic climate change and sea level. In: Solomon S (eds) IPCC climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 385–432

    Google Scholar 

  • Blewitt G, Clarke P (2003) Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J Geophys Res 108: 2311. doi:10.1029/2002JB002290

    Article  Google Scholar 

  • Cazenave A, Chen J (2010) Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth Planet Sci Lett 298: 263–274. doi:10.1016/j.epsl.2010.07.035

    Article  Google Scholar 

  • Cazenave A, Dominh K, Guinehut S, Berthier E, Llovel W, Ramillien G, Ablain M, Larnicol G (2009) Sea level budget over 2003–2008: a reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob Planet Change 65: 83–88. doi:10.1016/j.gloplacha.2008.10.004

    Article  Google Scholar 

  • Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates. Geophys Res Lett 32: L14405. doi:10.1029/2005GL022964

    Article  Google Scholar 

  • Chen JL, Tapley BD, Wilson CR (2006a) Alaskan mountain glacial melting observed by satellite gravimetry. Earth Planet Sci Lett 248: 368–378. doi:10.1016/j.epsl.2006.05.039

    Article  Google Scholar 

  • Chen JL, Wilson CR, Blankenship DD, Tapley BD (2006b) Antarctic mass rates from GRACE. Geophys Res Lett 33: L11502. doi:10.1029/2006GL026369

    Article  Google Scholar 

  • Chen JL, Wilson CR, Tapley BD, Blankenship DD, Ivins ER (2007) Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE). Geophys Res Lett 34: L22501. doi:10.1029/2007GL031871

    Article  Google Scholar 

  • Chen JL, Wilson CR, Seo K-W (2009) S2 tide aliasing in GRACE time-variable gravity solutions. J Geod 83: 679–687. doi:10.1007/s00190-008-0282-1

    Article  Google Scholar 

  • Cheng M, Tapley BD (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res 109: B09402. doi:10.1029/2004JB003028

    Article  Google Scholar 

  • Cheng MK, Tapley BD, Ries JC (2010) Geocenter variations from analysis of SLR data. IAG Commission 1 Symposium 2010. Reference Frames for Applications in Geosciences (REFAG2010), Marne-La-Vallee, France, 4–8 Oct 2010

  • Crétaux J-F, Soudarin L, Davidson FJM, Gennero M-C, Bergé-Nguyen M, Cazenave A (2002) Seasonal and interannual geocentre motion from SLR and DORIS measurements: comparison with surface loading data. J Geophys Res 107: 2374. doi:10.1029/2002JB001820

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the Earth by surface loading. Rev Geophys 10: 761–797. doi:10.1029/RG010i003p00761

    Article  Google Scholar 

  • Farrell WE, Clark JA (1976) On postglacial sea level. Geophys J R Astr Soc 46: 647–667. doi:10.1111/j.1365-246X.1976.tb01252.x

    Article  Google Scholar 

  • Flechtner F (2007) AOD1B product description document for product releases 01 to 04 (Rev 3.1). Technical report, GeoForschungszentrum Potsdam

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature. doi:10.1038/nature10847

  • Jekeli C (1981) Alternative methods to smooth the Earth’s gravity field. Rep 327, Department of Geod Sci and Surv, Ohio State University, Columbus

  • Koch KR (2005) Determining the maximum degree of harmonic coefficients in geopotential models by Monte Carlo methods. Stud Geophys Geod 49: 259–275. doi:10.1007/s11200-005-0009-1

    Article  Google Scholar 

  • Leuliette EW, Miller L (2009) Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys Res Lett 36: L04608. doi:10.1029/2008GL036010

    Article  Google Scholar 

  • Leuliette EW, Willis JK (2011) Balancing the sea level budget. Oceanography 24: 122–129. doi:10.5670/oceanog.2011.32

    Article  Google Scholar 

  • Llovel W, Becker M, Cazenave A, Crétaux J-F, Ramillien G (2010) Global and water storage change from GRACE over 2002–2009: inference on sea level. C R Geoscience 342: 179–188. doi:10.1016/j.crte.2009.12.004

    Article  Google Scholar 

  • Lombard A, Garcia D, Ramillien G, Cazenave A, Biancale R, Lemoine JM, Flechtner F, Schmidt R, Ishii M (2007) Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet Sci Lett 254: 194–202. doi:10.1016/j.epsl.2006.11.035

    Article  Google Scholar 

  • Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314: 1286–1289. doi:10.1126/science.1130776

    Article  Google Scholar 

  • Matsuo K, Heki K (2010) Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet Sci Lett 290: 30–36. doi:10.1016/j.epsl.2009.11.053

    Article  Google Scholar 

  • McCarthy DD, Petit G (2004) IERS conventions (2003). IERS technical note 32

  • Métivier L, Greff-Lefftz M, Altamimi Z (2010) On secular geocentre motion: the impact of climate changes. Earth Planet Sci Lett 296: 360–366. doi:10.1016/j.epsl.2010.05.021

    Article  Google Scholar 

  • Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2: 471–478. doi:10.1038/ngeo544

    Article  Google Scholar 

  • Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409: 1026–1029. doi:10.1038/35059054

    Article  Google Scholar 

  • Munk W (2002) Twentieth century sea level: an enigma. Proc Natl Acad Sci USA 99: 6550–6555. doi:10.1073/pnas.092704599

    Article  Google Scholar 

  • Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys J Int 171: 497–508. doi:10.1111/j.1365-246X.2007.03556.x

    Article  Google Scholar 

  • Quinn KJ, Ponte RM (2010) Uncertainty in ocean mass trends from GRACE. Geophys J Int 181: 762–768. doi:10.1111/j.1365-246X.2010.04508.x

    Google Scholar 

  • Rahmstorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315: 368–370. doi:10.1126/science.1135456

    Article  Google Scholar 

  • Rietbroek R, Fritsche M, Brunnabend S-E, Daras I, Kusche J, Schröter J, Flechtner F, Dietrich R (2011) Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data. J Geodyn. doi:10.1016/j.jog.2011.02.003

  • Rignot E, Velicogna I, van den Broeke M, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys Res Lett 38: L05503. doi:10.1029/2011GL046583

    Article  Google Scholar 

  • Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE (2009) Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth Planet Sci Lett 288: 516–523. doi:10.1016/j.epsl.2009.10.013

    Article  Google Scholar 

  • Riva REM, Bamber JL, Lavallée DA, Wouters B (2010) Sea-level fingerprint of continental water and ice mass change from GRACE. Geophys Res Lett 37: L19605. doi:10.1029/2010GL044770

    Article  Google Scholar 

  • Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res 113: B08419. doi:10.1029/2007JB005363

    Article  Google Scholar 

  • Song YT, Colberg F (2011) Deep ocean warming assessed from altimeters, Gravity Recovery and Climate Experiment, in situ measurements, and a nonBoussinesq ocean general circulation model. J Geophys Res 116: C02020. doi:10.1029/2010JC006601

    Article  Google Scholar 

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33: L08402. doi:10.1029/2005GL025285

    Article  Google Scholar 

  • Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39: 1223. doi:10.1029/2002WR001808

    Article  Google Scholar 

  • Swenson S, Chambers D, Wahr J (2008) Estimating geocentre variations from a combination of GRACE and ocean model output. J Geophys Res 113: B08410. doi:10.1029/2007JB005338

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The Gravity Recovery and Climate Experiment: mission overview and early results. Geophys Res Lett 31: L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36: L18401. doi:10.1029/2009GL039401

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006a) Measurements of time-variable gravity show mass loss in Antarctica. Science 311: 1754–1756. doi:10.1126/science.1123785

    Article  Google Scholar 

  • Velicogna I, Wahr J (2006b) Acceleration of Greenland ice mass loss in spring 2004. Nature 443: 329–331. doi:10.1038/nature05168

    Article  Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36: L19503. doi:10.1029/2009GL040222

    Article  Google Scholar 

  • Wagner CA, McAdoo DC (2011) Error calibration of geopotential harmonics in recent and past gravitational fields. J Geod. doi:10.1007/s00190-011-0494-7

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30229. doi:10.1029/98JB02844

    Google Scholar 

  • Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual timescales. J Geophys Res 113: C06015. doi:10.1029/2007JC004517

    Article  Google Scholar 

  • Wu X, Heflin MB, Ivins ER, Fukumori I (2006) Seasonal and interannual global surface mass variations from multisatellite geodetic data. J Geophys Res 111: B09401. doi:10.1029/2005JB004100

    Article  Google Scholar 

  • Wu X, Heflin MB, Schotman H, Vermeersen BLA, Dong D, Gross RS, Ivins ER, Moore AW, Owen SE (2010) Simultaneous estimation of global present-day water transport and glacial isostatic adjustment. Nat Geosci 3: 642–646. doi:10.1038/ngeo938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Baur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baur, O., Kuhn, M. & Featherstone, W.E. Continental mass change from GRACE over 2002–2011 and its impact on sea level. J Geod 87, 117–125 (2013). https://doi.org/10.1007/s00190-012-0583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-012-0583-2

Keywords

Navigation