Skip to main content
Log in

Methodology for the combination of sub-daily Earth rotation from GPS and VLBI observations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A combination procedure of Earth orientation parameters from Global Positioning System (GPS) and Very Long Baseline Interferometry (VLBI) observations was developed on the basis of homogeneous normal equation systems. The emphasis and purpose of the combination was the determination of sub-daily polar motion (PM) and universal time (UT1) for a long time-span of 13 years. Time series with an hourly resolution and a model for tidal variations of PM and UT1-TAI (dUT1) were estimated. In both cases, 14-day nutation corrections were estimated simultaneously with the ERPs. Due to the combination procedure, it was warranted that the strengths of both techniques were preserved. At the same time, only a minimum of de-correlating or stabilizing constraints were necessary. Hereby, a PM time series was determined, whose precision is mainly dominated by GPS observations. However, this setup benefits from the fact that VLBI delivered nutation and dUT1 estimates at the same time. An even bigger enhancement can be seen for the dUT1 estimation, where the high-frequency variations are provided by GPS, while the long term trend is defined by VLBI. The estimated combined tidal PM and dUT1 model was predominantly determined from the GPS observations. Overall, the combined tidal model for the first time completely comprises the geometrical benefits of VLBI and GPS observations. In terms of root mean squared (RMS) differences, the tidal amplitudes agree with other empirical single-technique tidal models below 4 μas in PM and 0.25 μs in dUT1. The noise floor of the tidal ERP model was investigated in three ways resulting in about 1 μas for diurnal PM and 0.07 μs for diurnal dUT1 while the semi-diurnal components have a slightly better accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112: B9401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85(8): 457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Artz T, Böckmann S, Jensen L, Nothnagel A, Steigenberger P (2010) Reliability and stability of VLBI-derived sub-daily EOP models. In: Behrend D, Baver KD (eds) IVS 2010 General Meeting Proceedings, VLBI2010: From Vision to Reality, 7–13 February 2010, Hobart, NASA/CP-2010-215864, pp 355–359. http://ivscc.gsfc.nasa.gov/publications/gm2010/artz.pdf

  • Artz T, Böckmann S, Nothnagel A, Steigenberger P (2010) Subdiurnal variations in the Earth’s rotation from continuous Very Long Baseline Interferometry campaigns. J Geophys Res 115: B05404. doi:10.1029/2009JB006834

    Article  Google Scholar 

  • Artz T, Tesmer S, Nothnagel A (2011) Assessment of periodic sub-diurnal Earth orientation parameter variations at tidal frequencies via transformation of VLBI normal equation systems. J Geod 85(9): 565–584. doi:10.1007/s00190-011-0457-z

    Article  Google Scholar 

  • Baver K (2010) Mark-5 VLBI analysis software Calc/Solve. Web document. http://gemini.gsfc.nasa.gov/solve/

  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A (1994) Extended orbit modeling techniques at the CODE processing center of the international GPS service for Geodynamics (IGS): theory and initial results. Manuscr Geodaet 19: 367–386

    Google Scholar 

  • Bianco G, Luceri V, Sciarretta C (2008) The ILRS standard products: A quality assessment, paper presented at 15th International Workshop on Laser Ranging, Electro Optic Syst. Pty. Ltd., Canberra, 15–20 Oct. In: Proceedings of the 15th International Workshop on Laser Ranging, 15–20 October 2006, Canberra, EOS Space Systems Pty Limited. http://cddis.gsfc.nasa.gov/lw15/docs/papers/The%20ILRS%20Standard%20Products,%20A%20Quality%20Assessment.pdf

  • Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with International Terrestrial Reference Frame 2005. In: Drewes H (ed) Geodetic Reference Frames, Springer Berlin Heidelberg, ISBN 978-3-642-00860-3, International Association of Geodesy Symposia, vol 134, pp 265–270. doi:10.1007/978-3-642-00860-3_41

  • Böckmann S, Artz T, Nothnagel A, Tesmer V (2007) Comparison and combination of consistent VLBI solutions. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for Geodesy and Astrometry Working Meeting, 12–13 April 2007, Vienna, Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380, pp 82–87. http://mars.hg.tuwien.ac.at/~evga/proceedings/S34_Boeckmann.pdf

  • Böckmann S, Artz T, Nothnagel A, Tesmer V (2010) International VLBI service for geodesy and astrometry: Earth orientation parameter combination methodology and quality of the combined products. J Geophys Res 115: B04404. doi:10.1029/2009JB006465

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-range Weather Forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Brockmann E (1997) Combination of solutions for geodetic and geodynamic applications of the Global Positioning System (GPS). Geod. Geophys. Arb. Schweiz, vol 55

  • Brosche P, Wuensch J (1994) On the ‘rotational angular momentum’ of the oceans and the corresponding polar motion. Astron Nachr 315(2): 181–188. doi:10.1002/asna.2103150208

    Article  Google Scholar 

  • Brosche P, Wünsch J, Seiler U, Sündermann J (1989) Periodic changes in Earth’s rotation due to oceanic tides. Astron Astrophys 220(1–2): 318–320

    Google Scholar 

  • Büllesfeld F (1985) Ein Beitrag zur harmonischen Darstellung des gezeitenerzeugenden Potentials. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Deutsche Geodätische Kommission Bayer. Akad. Wiss. München, Reihe C, vol 314. ISBN 3-7696-9364-7

  • Capitaine N, Wallace PT, Chapront J (2003) Expressions for IAU 2000 precession quantities. Astron Astrophys 412(2): 567–586. doi:10.1051/0004-6361:20031539

    Article  Google Scholar 

  • Chao BF, Liu HS, Dong DN, Herring TA (1991) Libration in the Earth’s rotation. Geophys Res Lett 18(11): 2007–2010. doi:10.1029/91GL02491

    Article  Google Scholar 

  • Chao BF, Ray RD, Egbert GD (1995) Diurnal/semidiurnal oceanic tidal angular momentum: Topex/Poseidon models in comparison with Earth’s rotation rate. Geophys Res Lett 22(15): 1993–1996. doi:10.1029/95GL01788

    Article  Google Scholar 

  • Chao BF, Ray RD, Gipson JM, Egbert GD, Ma C (1996) Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum. J Geophys Res 101(B9): 20151–20164. doi:10.1029/96JB01649

    Article  Google Scholar 

  • Clark TA, Corey BE, Davis JL, Herring TA, Elgered G (1985) Precision geodesy using the Mark-III very-long-baseline interferometer system. IEEE Trans Geosci Remote Sens 23: 438–449. doi:10.1109/TGRS.1985.289433

    Article  Google Scholar 

  • Dach, R, Hugentobler, U, Fridez, P, Meindl, M (eds) (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland

    Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83(3–4): 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Egbert GD, Bennett AF, Foreman MGG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99(C12): 24821–24852. doi:10.1029/94JC01894

    Article  Google Scholar 

  • Englich S, Heinkelmann R, Schuh H (2008) Re-assessment of ocean tidal terms in high-frequency Earth rotation variations observed by VLBI. In: Finkelstein A, Behrend D (eds) Proceedings of the Fifth IVS General Meeting “Measuring the Future”, 3 – 6 March 2008, St. Petersburg, Nauka, pp 314–318. ftp://ivscc.gsfc.nasa.gov/pub/general-meeting/2008/pdf/englich.pdf

  • Ferland R, Piraszewski M (2009) The IGS-combined station coordinates, earth rotation parameters and apparent geocenter. J Geod 83(3–4): 385–392. doi:10.1007/s00190-008-0295-9

    Article  Google Scholar 

  • Fey A, Gordon D, Jacobs CS (2009) The second realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. IERS Technical Note 35, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main. ISBN 1019-4568. http://www.iers.org/nn_11216/IERS/EN/Publications/TechnicalNotes/tn35.html

  • Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008) The geoforschungszentrum potsdam/groupe de recherche de godsie spatiale satellite-only and combined gravity field models: Eigen-gl04s1 and eigen-gl04c. J Geod 82(6): 331–346. doi:10.1007/s00190-007-0183-8

    Article  Google Scholar 

  • Fritsche M, Dietrich R, Knöfel C, Rülke A, Vey S, Rothacher M, Steigenberger P (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32: L23311. doi:10.1029/2005GL024342

    Article  Google Scholar 

  • Gipson JM (1996) Very long baseline interferometry determination of neglected tidal terms in high-frequency earth orientation variation. J Geophys Res 101(B12): 28051–28064. doi:10.1029/96JB02292

    Article  Google Scholar 

  • Gipson JM, Ray RD (2009) A new model of tidal EOP variations from VLBI data spanning 30 years. In: EGU General Assembly 2009, 19–24 April 2009, Vienna, vol 11, p 13096.http://meetingorganizer.copernicus.org/EGU2009/EGU2009-13096.pdf

  • Hefty J, Rothacher M, Springer T, Weber R, Beutler G (2000) Analysis of the first year of Earth rotation parameters with a sub-daily resolution gained at the CODE processing center of the IGS. J Geod 74(6): 479–487. doi:10.1007/s001900000108

    Article  Google Scholar 

  • Herring TA, Dong D (1991) Current and future accuracy of Earth rotation measurements. In: Carter WE (ed) Proceedings of the Chapman conference on Geodetic VLBI: Monitoring Global Change, NOAA Technical Report NOS 137 NGS 49, Washington, pp 306–324

  • Herring TA, Dong D (1994) Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth. J Geophys Res 99(B9): 18051–18071. doi:10.1029/94JB00341

    Article  Google Scholar 

  • Kouba J (2003) Testing of the IERS2000 sub-daily Earth rotation parameter model. Stud Geophys Geod 47: 725–739. doi:10.1023/A:1026338601516

    Article  Google Scholar 

  • Letellier T (2004) Etude des ondes de marée sur les plateux continentaux. PhD thesis, Université de Toulouse III, école Doctorale des Sciences de l’Univers, de l’Environnement et de l’Espace

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56(5–6): 394–415. doi:10.1007/s10236-006-0086-x

    Article  Google Scholar 

  • Ma C, Sauber JM, Clark TA, Ryan JW, Bell LJ, Gordon D, Himwich WE (1990) Measurement of horizontal motions in Alaska using very long baseline interferometry. J Geophys Res 95(B13): 21991–22011. doi:10.1029/JB095iB13p21991

    Article  Google Scholar 

  • MacMillan D (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9): 1041–1044. doi:10.1029/95GL00887

    Article  Google Scholar 

  • Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107(B9): 2068. doi:10.1029/2001JB000390

    Article  Google Scholar 

  • McCarthy D, Petit G (2004) IERS Conventions 2003. IERS Technical Note 32, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main. http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn32.html

  • Nothnagel A, Pilhatsch M, Haas R (1995) Investigations of thermal height changes of geodetic VLBI telescopes. In: Lanotte R, Nianco G (eds) Proceedings of the 10th Working Meeting on European VLBI for Geodesy and Astrometry, 24–26 May 1995, Matera, Agenzia Spatiale Italiana, Matera, pp 121–133

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2): 135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions 2010. IERS Technical Note 35, Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main. ISSN 1019-4568. http://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html

  • Petrov L (2007) The empirical Earth rotation model from VLBI observations. Astron Astrophys 467(1): 359–369. doi:10.1051/0004-6361:20065091

    Article  Google Scholar 

  • Petrov L, Ma C (2003) Study of harmonic site position variations determined by Very Long Baseline Interferometry. J Geophys Res 108: 2190. doi:10.1029/2002JB001801

    Article  Google Scholar 

  • Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Solut 8(4): 251–266. doi:10.1007/s10291-004-0110-x

    Article  Google Scholar 

  • Ray JR (1996) Measurements of length of day using the Global Positioning System. J Geophys Res 101(B9): 20141–20149. doi:10.1029/96JB01889

    Article  Google Scholar 

  • Ray RD, Steinberg DJ, Chao BF, Cartwright DE (1994) Diurnal and semidiurnal variations in the Earth’s rotation rate induced by oceanic tides. Science 264(5160): 830–832. doi:10.1126/science.264.5160.830

    Article  Google Scholar 

  • Rothacher M, Beutler G, Herring TA, Weber R (1999) Estimation of nutation using the Global Positioning System. J Geophys Res 104(B3): 4835–4860. doi:10.1029/1998JB900078

    Article  Google Scholar 

  • Rothacher M, Beutler G, Weber R, Hefty J (2001) High-frequency variations in Earth rotation from Global Positioning System data. J Geophys Res 106(B7): 13711–13738. doi:10.1029/2000JB900393

    Article  Google Scholar 

  • Rothacher M, Drewes H, Nothnagel A, Richter B (2010) Integration of space geodetic techniques as a basis for the global geodetic-geophysical observing system (GGOS-D): an overview. In: Flechtner F, Gruber T, Güntner A, Mandea M, Rothacher M, Schöne T, Wickert J (eds) System Earth via Geodetic-Geophysical Space Techniques. Springer, Berlin, pp 529–537. doi:10.1007/978-3-642-10228-8_43

  • Rothacher M, Angermann D, Artz T, Bosch W, Böckmann S, Drewes H, Gerstl M, Kelm R, König D, König R, Meisel B, Müller H, Nothnagel A, Panafidina N, Richter B, Rudenko S, Schwegmann W, Seitz M, Steigenberger P, Tesmer V, Thaller D (2011) GGOS–D: Homogeneous reprocessing and rigorous combination of space geodetic observations. J Geod. doi:10.1007/s00190-011-0475-x

  • Scherneck H, Haas R (1999) Effect of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1. Geophys Res Lett 26(4): 501–504. doi:10.1029/1999GL900020

    Article  Google Scholar 

  • Schlüter W, Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6): 379–387. doi:10.1007/s00190-006-0131-z

    Article  Google Scholar 

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase center correction model for GPS receiver and satellite antennas. J Geod 81(12): 781–798. doi:10.1007/s00190-007-0148-y

    Article  Google Scholar 

  • Seiler U, Wünsch J (1995) A refined model for the influence of ocean tides on UT1 and polar motion. Astron Nachr 316(6): 419–423. doi:10.1002/asna.2103160610

    Article  Google Scholar 

  • Skurikhina E (2001) On computation of antenna thermal deformation in VLBI data processing. In: Behrend D, Rius A (eds) Proceedings of the 15th Workshop Meeting on European VLBI for Geodesy and Astrometry, 07–08 September 2001, Barcelona, Institut d’Estudis Espacials de Catalunya, Consejo Superior de Investigaciones Cient-ficas, Barcelona. pp 124–130. http://www.ieec.fcr.es/hosted/15wmevga/proceedings/skurikhina/skurikhina.html

  • Springer TA (2000) Modeling and validating orbits and clocks using the Global Positioning System. Geod.-Geophys. Arb. Schweiz, vol 60

  • Steigenberger P (2009) Reprocessing of a global GPS network. PhD thesis, Technische Universität München, Deutsche Geodätische Kommission Bayer. Akad. Wiss. München, Reihe C, vol 640. ISBN 978-3-7696-5052-5. http://129.187.165.2/typo3_dgk/docs/c-640.pdf

  • Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111: B05402. doi:10.1029/2005JB003747

    Article  Google Scholar 

  • Thaller D, Krügel M, Rothacher M, Tesmer V, Schmid R, Angermann D (2007) Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data. J Geod 81(6–8): 529–541. doi:10.1007/s00190-006-0115-z

    Article  Google Scholar 

  • Vennebusch M, Böckmann S, Nothnagel A (2007) The contribution of very long baseline interferometry to ITRF2005. J Geod 81(6–8): 553–564. doi:10.1007/s00190-006-0117-x

    Article  Google Scholar 

  • Watkins MM, Eanes RJ (1994) Diurnal and semidiurnal variations in Earth orientation determined from LAGEOS laser ranging. J Geophys Res 99(B9): 18073–18080. doi:10.1029/94JB00805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Artz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artz, T., Bernhard, L., Nothnagel, A. et al. Methodology for the combination of sub-daily Earth rotation from GPS and VLBI observations. J Geod 86, 221–239 (2012). https://doi.org/10.1007/s00190-011-0512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0512-9

Keywords

Navigation