Skip to main content
Log in

Thermal analysis of the hydrostatic spindle system by the finite volume element method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The temperature rise of an ultra-precision machine tool has a great impact on machining accuracy. Meanwhile, the hydrostatic spindle system is the main internal heat source of the machine tool, which consists of a hydrostatic spindle and a direct current motor. Therefore, it is very significant to study the thermal behaviors of the hydrostatic spindle system. In this paper, an integrated heat-fluid–solid coupling model of the hydrostatic spindle system is built to simulate the heat generation process and the fluid–structure conjugate heat transfer. Then a finite volume element method (FVEM) is proposed by combining the advantages of the finite volume method (FVM) and the finite element method (FEM) with consideration of the interaction of the temperature field, thermal deformation, and eccentricity. Based on the proposed model and method, the thermal characteristics of the hydrostatic spindle system are studied by the two-way heat-fluid–solid coupling analysis. The temperature variations obtained by the simulation agree well with the experimental results, which validate the proposed model and method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bryan J (1990) International status of thermal error research. CIRP Ann 39(2):645–656

    Article  MathSciNet  Google Scholar 

  2. Weck M, Mckeown P, Bonse R, Herbst U (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann 44(2):89–598

    Article  Google Scholar 

  3. Liang RJ, Ye WH, Zhang HH, Yang QF (2013) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63:1167–1176

    Google Scholar 

  4. Hsieh KH, Chen TR, Chang P, Tang CH (2013) Thermal growth measurement and compensation for integrated spindles. Int J Adv Manuf Technol 64:889–901

    Article  Google Scholar 

  5. Creighton E, Honegger A, Tulsian A, Mukhopadhyay D (2010) Analysis of thermal errors in a high-speed micro-milling spindle. Int J Mach Tools Manuf 50(4):386–393

    Article  Google Scholar 

  6. Kim JJ, Jeong YH, Cho DW (2004) Thermal behavior of a machine tool equipped with linear motors. Int J Mach Tools Manuf 44(7–8):749–758

    Article  Google Scholar 

  7. Chen DJ, Bonis M, Zhang FH, Dong S (2011) Thermal error of a hydrostatic spindle. Precis Eng 35(3):512–520

    Article  Google Scholar 

  8. Zhao HT, Yang JG, Shen JH (2007) Simulation of thermal behavior of a CNC machine tool spindle. Int J Mach Tools Manuf 47:1003–1010

    Article  Google Scholar 

  9. Zhang JF, Feng PF, Chen C, Yu DW, Wu ZJ (2013) A method for thermal performance modeling and simulation of machine tools. Int J Adv Manuf Technol 68:1517–1527

    Article  Google Scholar 

  10. Mayr J, Weikert S, Wegener K (2007) Comparing the thermo-mechanical behavior of machine tool frame designs using a FDM-FEM simulation approach. Proceedings ASPE annual meeting:17–20

  11. Mayr J, Ess M, Weikert S, Wegener K (2009) Compensation of thermal effects on machine tools using a FDEM simulation approach. Proceedings Lamdamap, vol.9. ISBN 1861941188

  12. Jedrzejewski J, Kowai Z, Kwasny W, Modrzycki W (2004) Hybrid model of high speed machining centre headstock. CIRP Ann 53(1):285–288

    Article  Google Scholar 

  13. Holkup T, Cao H, Kolář P, Altintas Y, Zelený Y (2010) Thermo-mechanical model of spindles. CIRP Ann 59(1):365–368

    Article  Google Scholar 

  14. Li DX, Feng PF, Zhang JF, Wu ZJ, Yu DW (2014) Calculation method of convective heat transfer coefficients for thermal simulation of a spindle system based on RBF neural network. Int J Adv Manuf Technol. doi:10.1007/s00170-013-5386-y

    Google Scholar 

  15. Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Hartig F, Wendt K, Morwaki T, Shore P, Schmitt R, Brecher C, Wurz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann 61:771–791

    Article  Google Scholar 

  16. Anderson JD (1995) Computational fluid dynamics: the basics with applications. McGraw Hill, New York

    Google Scholar 

  17. Larson MG, Bengzon F (2013) The finite element method: theory, implementation and applications. Springer, Heidelberg

    Book  Google Scholar 

  18. Zhang HL (2010) Iron Losses and transient temperature field of permanent magnetic synchronous motor, Dissertation, Harbin institute of technology

  19. Wu TH, Wang XM, G.L. Xu GL (2011) Engineering thermodynamics. Huazhong University of Science and Technology Press, Wuhan

  20. Cardone G, Astarita T, Carlomagno GM (1997) Heat transfer measurements on a rotating disk. Int J Rotating Mach 3:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, H., Lu, L., Liang, Y. et al. Thermal analysis of the hydrostatic spindle system by the finite volume element method. Int J Adv Manuf Technol 71, 1949–1959 (2014). https://doi.org/10.1007/s00170-014-5627-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-5627-8

Keywords

Navigation