Skip to main content
Log in

Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Rotational knee laxity is an important measure in restoring knee stability following anterior cruciate ligament (ACL) injury, but is difficult to quantify with current clinical tools. The hypothesis of the study is that there is greater tibial rotation (TR) in women than men, and also in ACL-deficient than healthy knees.

Methods

Sixteen healthy (8 men, 26.8 ± 6.4 years; 8 women, 26.9 ± 3.8 years) and ten ACL-deficient (5 men, 33.6 ± 10.5 years; 5 women, 36.3 ± 10.7 years) subjects received bilateral knee MRI in 15° of flexion using a custom device to apply a constant axial compressive load (44 N). A rotational torque (3.35 Nm) was sequentially applied to obtain images at internal and external rotation positions. T 2-weighted images were acquired in internal and external rotation. Images were segmented and TR was calculated. To assess reproducibility, six knees were scanned twice on separate days. Group comparisons were made with unpaired t tests, while intrasubject comparisons were made using paired t tests.

Results

Healthy women demonstrated greater TR than men (13.6° ± 4.7° vs. 8.3° ± 3.6°; P = 0.001). Male ACL-deficient knees showed greater TR than the contralateral knee (15.7° ± 6.9° vs. 7.7° ± 5.6°; P = 0.003), and compared to male controls (P = 0.002). ACL-deficient women showed greater TR compared to their contralateral leg (15.1° ± 2.3° vs. 10.0° ± 4.3°; P = 0.01). The intraclass correlation coefficient of the TR measurement was 0.913, and the SEM = 1.1°.

Conclusions

Kinematic MRI is a reproducible method to quantify total knee rotation. Women have more rotational laxity than men, particularly in the external rotation position. ACL rupture leads to increased rotational laxity of the knee.

Level of evidence

Retrospective case–control series, Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahlden M, Kartus J, Ejerhed L, Karlsson J, Sernert N (2009) Knee laxity measurements after anterior cruciate ligament reconstruction, using either bone-patellar-tendon-bone or hamstring tendon auto grafts, with special emphasis on comparison over time. Knee Surg Sports Traumatol Arthrosc 17(9):1117–1124

    Article  PubMed  Google Scholar 

  2. Almquist PO, Arnbjornsson A, Zatterstrom R, Ryd L, Ekdahl C, Friden T (2002) Evaluation of an external device measuring knee joint rotation: an in vivo study with simultaneous Roentgen stereometric analysis. J Orthop Res 20(3):427–432

    Article  PubMed  Google Scholar 

  3. Andersen HN, Dyhre-Poulsen P (1997) The anterior cruciate ligament does play a role in controlling axial rotation in the knee. Knee Surg Sports Traumatol Arthrosc 5(3):145–149

    Article  PubMed  CAS  Google Scholar 

  4. Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 23(6):694–701

    Article  PubMed  CAS  Google Scholar 

  5. Arendt EA, Bershadsky B, Agel J (2002) Periodicity of noncontact anterior cruciate ligament injuries during the menstrual cycle. J Gend Specif Med 5(2):19–26

    PubMed  Google Scholar 

  6. Boden BP, Sheehan FT, Torg JS, Hewett TE (2010) Noncontact anterior cruciate ligament injuries: mechanisms and risk factors. J Am Acad Orthop Surg 18(9):520–527

    PubMed  Google Scholar 

  7. Bull AM, Earnshaw PH, Smith A, Katchburian MV, Hassan AN, Amis AA (2002) Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament. J Bone Joint Surg Br 84(7):1075–1081

    Article  PubMed  CAS  Google Scholar 

  8. Carpenter RD, Majumdar S, Ma CB (2009) Magnetic resonance imaging of 3-dimensional in vivo tibiofemoral kinematics in anterior cruciate ligament-reconstructed knees. Arthroscopy 25(7):760–766

    Article  PubMed  Google Scholar 

  9. Carpenter RD, Shefelbine S, Lozano J, Carballido-Gamio J, Majumdar S, Ma CB (2008) A new device for measuring knee rotational kinematics using magnetic resonance imaging. J Med Device 2(4):044501

    Article  Google Scholar 

  10. Chandrashekar N, Slauterbeck J, Hashemi J (2005) Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med 33(10):1492–1498

    Article  PubMed  Google Scholar 

  11. Chouliaras V, Ristanis S, Moraiti C, Stergiou N, Georgoulis AD (2007) Effectiveness of reconstruction of the anterior cruciate ligament with quadrupled hamstrings and bone-patellar tendon-bone autografts: an in vivo study comparing tibial internal-external rotation. Am J Sports Med 35(2):189–196

    Article  PubMed  Google Scholar 

  12. Claes S, Neven E, Callewaert B, Desloovere K, Bellemans J (2011) Tibial rotation in single- and double-bundle ACL reconstruction: a kinematic 3-D in vivo analysis. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-011-1568-z

  13. Colombet P, Robinson J, Christel P, Franceschi JP, Djian P (2007) Using navigation to measure rotation kinematics during ACL reconstruction. Clin Orthop Relat Res 454:59–65

    Article  PubMed  Google Scholar 

  14. Fu FH (2011) Double-bundle ACL reconstruction. Orthopedics 34(4):281–283

    PubMed  Google Scholar 

  15. Fung DT, Hendrix RW, Koh JL, Zhang LQ (2007) ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 460:210–218

    PubMed  Google Scholar 

  16. Gao B, Zheng NN (2010) Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clin Biomech (Bristol, Avon) 25(3):222–229

    Article  Google Scholar 

  17. Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31(1):75–79

    PubMed  Google Scholar 

  18. Girgis FG, Marshall JL, Monajem A (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231

    Article  PubMed  Google Scholar 

  19. Gobbi A, Mahajan V, Karnatzikos G, Nakamura N (2011) Single- versus double-bundle ACL reconstruction: is there any difference in stability and function at 3-year followup? Clin Orthop Relat Res. doi:10.1007/s11999-011-1940-9

  20. Hofbauer M, Valentin P, Kdolsky R, Ostermann RC, Graf A, Figl M, Aldrian S (2010) Rotational and translational laxity after computer-navigated single- and double-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18(9):1201–1207

    Article  PubMed  CAS  Google Scholar 

  21. Ireland ML, Ott SM (2004) Special concerns of the female athlete. Clin Sports Med 23(2):281–298, vii

    Google Scholar 

  22. Isberg J, Faxen E, Laxdal G, Eriksson BI, Karrholm J, Karlsson J (2011) Will early reconstruction prevent abnormal kinematics after ACL injury? Two-year follow-up using dynamic radiostereometry in 14 patients operated with hamstring autografts. Knee Surg Sports Traumatol Arthrosc 19(10):1634–1642

    Article  PubMed  Google Scholar 

  23. Lorbach O, Wilmes P, Theisen D, Brockmeyer M, Maas S, Kohn D, Seil R (2009) Reliability testing of a new device to measure tibial rotation. Knee Surg Sports Traumatol Arthrosc 17(8):920–926

    Article  PubMed  Google Scholar 

  24. Moul JL (1998) Differences in selected predictors of anterior cruciate ligament tears between male and female NCAA division i collegiate basketball players. J Athl Train 33(2):118–121

    PubMed  CAS  Google Scholar 

  25. Musahl V, Bell KM, Tsai AG, Costic RS, Allaire R, Zantop T, Irrgang JJ, Fu FH (2007) Development of a simple device for measurement of rotational knee laxity. Knee Surg Sports Traumatol Arthrosc 15(8):1009–1012

    Article  PubMed  Google Scholar 

  26. Park HS, Wilson NA, Zhang LQ (2008) Gender differences in passive knee biomechanical properties in tibial rotation. J Orthop Res 26(7):937–944

    Article  PubMed  Google Scholar 

  27. Rong GW, Wang YC (1987) The role of cruciate ligaments in maintaining knee joint stability. Clin Orthop Relat Res 215:65–71

    PubMed  Google Scholar 

  28. Samukawa M, Magee D, Katayose M (2007) The effect of tibial rotation on the presence of instability in the anterior cruciate ligament deficient knee. J Sport Rehabil 16(1):2–17

    PubMed  Google Scholar 

  29. Schmitz RJ, Ficklin TK, Shimokochi Y, Nguyen AD, Beynnon BD, Perrin DH, Shultz SJ (2008) Varus/valgus and internal/external torsional knee joint stiffness differs between sexes. Am J Sports Med 36(7):1380–1388

    Article  PubMed  Google Scholar 

  30. Shin CS, Carpenter RD, Majumdar S, Ma CB (2009) Three-dimensional in vivo patellofemoral kinematics and contact area of anterior cruciate ligament-deficient and -reconstructed subjects using magnetic resonance imaging. Arthroscopy 25(11):1214–1223

    Article  PubMed  Google Scholar 

  31. Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007) Measurement of varus-valgus and internal-external rotational knee laxities in vivo–Part II: relationship with anterior-posterior and general joint laxity in males and females. J Orthop Res 25(8):989–996

    Article  PubMed  Google Scholar 

  32. Takeda Y, Sato R, Ogawa T, Fujii K, Naruse A (2009) In vivo magnetic resonance imaging measurement of tibiofemoral relation with different knee flexion angles after single- and double-bundle anterior cruciate ligament reconstructions. Arthroscopy 25(7):733–741

    Article  PubMed  Google Scholar 

  33. Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983

    Article  PubMed  Google Scholar 

  34. Tsai AG, Musahl V, Steckel H, Bell KM, Zantop T, Irrgang JJ, Fu FH (2008) Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord 9:35

    Article  PubMed  Google Scholar 

  35. van Eck CF, Schreiber VM, Mejia HA, Samuelsson K, van Dijk CN, Karlsson J, Fu FH (2010) “Anatomic” anterior cruciate ligament reconstruction: a systematic review of surgical techniques and reporting of surgical data. Arthroscopy 26(9 Suppl):S2–S12

    PubMed  Google Scholar 

  36. Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G (2009) Gender differences in trochlear groove orientation and rotational kinematics of human knees. J Orthop Res 27(7):871–878

    Article  PubMed  Google Scholar 

  37. Yu B, Garrett WE (2007) Mechanisms of non-contact ACL injuries. Br J Sports Med 41(Suppl 1):i47–i51

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Benjamin Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haughom, B.D., Souza, R., Schairer, W.W. et al. Evaluating rotational kinematics of the knee in ACL-ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 20, 663–670 (2012). https://doi.org/10.1007/s00167-011-1809-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1809-1

Keywords

Navigation