Skip to main content
Log in

Bupivacaine, ropivacaine, and morphine: comparison of toxicity on human hamstring-derived stem/progenitor cells

  • Experimental Study
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Bupivacaine, ropivacaine, and morphine are commonly administered intraarticularly after anterior cruciate ligament (ACL) reconstruction. However, their effects on human tendon stem/progenitor cells (TSPC) have not been studied. Therefore, this study investigates the cytotoxicity of these analgetics on TSPC.

Methods

Cells were isolated from human hamstring grafts of 3 female (age 15, 16 and 59) and 2 male patients (age 16 and 47). Cells were incubated using 0.5% bupivacaine, 0.5/0.75% ropivacaine, and 0.025% morphine. Cell viability was assessed after 0.5, 2, and 6 h using live/dead assay. Metabolic activity and apoptosis were measured by WST- and Annexin-V-FACS-assay after 2 h.

Results

Cell viability remained unchanged after 0.5 h in all groups, while treatment with bupivacaine and 0.5/0.75% ropivacaine resulted in a complete cell loss after 6 h. Contrarily, morphine showed no cytotoxic effect. Cell viability and metabolism were significantly reduced after treatment with bupivacaine (22.1; 8.3%) and 0.75% ropivacaine (56.5; 23.8%), while 0.5% ropivacaine and morphine showed no significant difference compared with controls. Apoptosis was significantly induced after incubation with bupivacaine (58.1%) and 0.75% ropivacaine (26.2%), whereas 0.5% ropivacaine only led to a slight induction compared with morphine and controls.

Conclusions

Clinically administered concentrations of bupivacaine (0.5%) and ropivacaine (0.75%) have a significant cytotoxic effect on human TSPC in vitro, while ropivacaine in a concentration of 0.5% has a mild but not significant effect on apoptosis and cell metabolism. In contrast, morphine does not affect cell survival, metabolism, or apoptosis. Knowing that morphine provides comparable to even prolonged pain reduction after ACL reconstruction, the presented in vitro study suggests morphine as a potentially less toxic analgetic drug for intraarticular application in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13:1219–1227

    Article  PubMed  CAS  Google Scholar 

  2. Brandsson S, Karlsson J, Morberg P, Rydgren B, Eriksson BI, Hedner T (2000) Intraarticular morphine after arthroscopic ACL reconstruction: a double-blind placebo-controlled study of 40 patients. Acta Orthop Scand 71:280–285

    Article  PubMed  CAS  Google Scholar 

  3. Bullough R, Finnigan T, Kay A, Maffulli N, Forsyth NR (2008) Tendon repair through stem cell intervention: cellular and molecular approaches. Disabil Rehabil 30:1746–1751

    Article  PubMed  Google Scholar 

  4. Chu CR, Izzo NJ, Coyle CH, Papas NE, Logar A (2008) The in vitro effects of bupivacaine on articular chondrocytes. J Bone Joint Surg Br 90:814–820

    Article  PubMed  CAS  Google Scholar 

  5. Chu CR, Izzo NJ, Papas NE, Fu FH (2006) In vitro exposure to 0.5% bupivacaine is cytotoxic to bovine articular chondrocytes. Arthroscopy 22:693–699

    Article  PubMed  Google Scholar 

  6. Convery PN, Milligan KR, Quinn P, Sjovall J, Gustafsson U (2001) Efficacy and uptake of ropivacaine and bupivacaine after single intra-articular injection in the knee joint. Br J Anaesth 87:570–576

    Article  PubMed  CAS  Google Scholar 

  7. Dogan N, Erdem AF, Erman Z, Kizilkaya M (2004) The effects of bupivacaine and neostigmine on articular cartilage and synovium in the rabbit knee joint. J Int Med Res 32:513–519

    PubMed  CAS  Google Scholar 

  8. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  9. Ekdahl M, Wang JH, Ronga M, Fu FH (2008) Graft healing in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 16:935–947

    Article  PubMed  Google Scholar 

  10. Feinstein DL, Murphy P, Sharp A, Galea E, Gavrilyuk V, Weinberg G (2001) Local anesthetics potentiate nitric oxide synthase type 2 expression in rat glial cells. J Neurosurg Anesthesiol 13:99–105

    Article  PubMed  CAS  Google Scholar 

  11. Fuson RL, Sherman M, Van Vleet J, Wendt T (1997) The conduct of orthopaedic clinical trials. J Bone Joint Surg Am 79:1089–1098

    PubMed  CAS  Google Scholar 

  12. Gupta A, Bodin L, Holmstrom B, Berggren L (2001) A systematic review of the peripheral analgesic effects of intraarticular morphine. Anesth Analg 93:761–770

    Article  PubMed  CAS  Google Scholar 

  13. Jaureguito JW, Wilcox JF, Cohn SJ, Thisted RA, Reider B (1995) A comparison of intraarticular morphine and bupivacaine for pain control after outpatient knee arthroscopy. A prospective, randomized, double-blinded study. Am J Sports Med 23:350–353

    Article  PubMed  CAS  Google Scholar 

  14. Jaureguito JW, Wilcox JF, Thisted RA, Phillips C, Cunningham B, Reider B (2002) The effects of morphine on human articular cartilage of the knee: an in vitro study. Arthroscopy 18:631–636

    Article  PubMed  Google Scholar 

  15. Joshi GP, McCarroll SM, Brady OH, Hurson BJ, Walsh G (1993) Intra-articular morphine for pain relief after anterior cruciate ligament repair. Br J Anaesth 70:87–88

    Article  PubMed  CAS  Google Scholar 

  16. Joshi GP, McCarroll SM, O’Brien TM, Lenane P (1993) Intraarticular analgesia following knee arthroscopy. Anesth Analg 76:333–336

    PubMed  CAS  Google Scholar 

  17. Karlsson J, Rydgren B, Eriksson B, Jarvholm U, Lundin O, Sward L, Hedner T (1995) Postoperative analgesic effects of intra-articular bupivacaine and morphine after arthroscopic cruciate ligament surgery. Knee Surg Sports Traumatol Arthrosc 3:55–59

    Article  PubMed  CAS  Google Scholar 

  18. Lim JK, Hui J, Li L, Thambyah A, Goh J, Lee EH (2004) Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy 20:899–910

    Article  PubMed  Google Scholar 

  19. Marret E, Gentili M, Bonnet MP, Bonnet F (2005) Intra-articular ropivacaine 0.75% and bupivacaine 0.50% for analgesia after arthroscopic knee surgery: a randomized prospective study. Arthroscopy 21:313–316

    Article  PubMed  Google Scholar 

  20. Møiniche S, Mikkelsen S, Wetterslev J, Dahl JB (1999) A systematic review of intra-articular local anesthesia for postoperative pain relief after arthroscopic knee surgery. Reg Anesth Pain Med 24:430–437

    PubMed  Google Scholar 

  21. Müller M, Burkhardt J, Borchardt E, Buttner-Janz K (2001) Postoperative analgesic effect after intra-articular morphine or ropivacaine following knee arthroscopy - a prospective randomized, doubleblinded study. Schmerz 15:3–9

    Article  PubMed  Google Scholar 

  22. Nouette-Gaulain K, Dadure C, Morau D, Pertuiset C, Galbes O, Hayot M, Mercier J, Sztark F, Rossignol R, Capdevila X (2009) Age-dependent bupivacaine-induced muscle toxicity during continuous peripheral nerve block in rats. Anesthesiology 111:1120–1127

    Article  PubMed  CAS  Google Scholar 

  23. Ouyang HW, Goh JC, Lee EH (2004) Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med 32:321–327

    Article  PubMed  Google Scholar 

  24. Piper SL, Kim HT (2008) Comparison of ropivacaine and bupivacaine toxicity in human articular chondrocytes. J Bone Joint Surg Am 90:986–991

    Article  PubMed  Google Scholar 

  25. Soon MY, Hassan A, Hui JH, Goh JC, Lee EH (2007) An analysis of soft tissue allograft anterior cruciate ligament reconstruction in a rabbit model: a short-term study of the use of mesenchymal stem cells to enhance tendon osteointegration. Am J Sports Med 35:962–971

    Article  PubMed  Google Scholar 

  26. Stein C, Comisel K, Haimerl E, Yassouridis A, Lehrberger K, Herz A, Peter K (1991) Analgesic effect of intraarticular morphine after arthroscopic knee surgery. N Engl J Med 325:1123–1126

    Article  PubMed  CAS  Google Scholar 

  27. Vintar N, Rawal N, Veselko M (2005) Intraarticular patient-controlled regional anesthesia after arthroscopically assisted anterior cruciate ligament reconstruction: ropivacaine/morphine/ketorolac versus ropivacaine/morphine. Anesth Analg 101:573–578 (table)

    Google Scholar 

  28. Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, Kallukalam BC, Mutschler W, Schieker M (2008) Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part A 14:1331–1340

    Article  PubMed  CAS  Google Scholar 

  29. Werdehausen R, Fazeli S, Braun S, Hermanns H, Essmann F, Hollmann MW, Bauer I, Stevens MF (2009) Apoptosis induction by different local anaesthetics in a neuroblastoma cell line. Br J Anaesth 103:711–718

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Anz, Division of Clinical Pharmacology, University of Munich (LMU), for the collaboration and support regarding the flow cytometry analysis. Florian Haasters acknowledges the support of the Friedrich-Baur-Foundation, LMU Munich (project 0019/2008) and by the Faculty of Medicine, LMU Munich (FöFoLe, project 660). Hans Polzer was supported by the Friedrich-Baur-Foundation, LMU Munich (project 0018/2008), the scientific publisher council of MMW, Munich and by the Faculty of Medicine, LMU Munich (FöFoLe, project 704). Wolf Christian Prall was supported by the Faculty of Medicine, LMU Munich (FöFoLe, project 565). Denitsa Docheva and Matthias Schieker acknowledge the support of the German Research Foundation (DFG) (project DO1414/1-1) and the Bavarian Research Foundation (ForZebRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Schieker.

Additional information

F. Haasters and H. Polzer have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haasters, F., Polzer, H., Prall, W.C. et al. Bupivacaine, ropivacaine, and morphine: comparison of toxicity on human hamstring-derived stem/progenitor cells. Knee Surg Sports Traumatol Arthrosc 19, 2138–2144 (2011). https://doi.org/10.1007/s00167-011-1564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-011-1564-3

Keywords

Navigation