Skip to main content
Log in

Analysis and numerical simulation of a laboratory analog of radiatively induced cloud-top entrainment

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Numerical simulations using the one-dimensional-turbulence (ODT) model are compared to water-tank measurements emulating convection and entrainment in stratiform clouds driven by cloud-top cooling. Measured dependences of the entrainment rate on Richardson number were numerically reproduced for water trials in which the initial stratification is due to temperature differences. For an additional set of trials where the initial stratification is obtained by adding dextrose to the lower layer of the tank, measured dependences of the entrainment rate on Richardson number were partially reproduced, and importantly, the model also captures the measured sensitivity of entrainment to molecular transport. Additional parameter variations suggest other dependences of the entrainment rate. Analysis suggests possible qualitative differences between laboratory and cloud entrainment behaviors that might be testable using ODT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bony S., Dufresne J.L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophy. Res. Lett. 32, L20806 (2006)

    Article  Google Scholar 

  2. Corrsin, S., Kistler, A.L.: Technical report. NACA report no. 1244 (1955)

  3. Deardorff J.W.: Cloud top entrainment instability. J. Atmos. Sci. 37, 131–147 (1980)

    Article  Google Scholar 

  4. Dimotakis P.E.: Turbulent mixing. Ann. Rev. Fluid Mech. 37, 329–356 (2005)

    Article  MathSciNet  Google Scholar 

  5. Dreeben T., Kerstein A.R.: Simulation of vertical slot convection using ‘one-dimensional turbulence’. Int. J. Heat Mass Transf. 43, 3823–3834 (2000)

    Article  MATH  Google Scholar 

  6. Echekki T., Kerstein A.R., Dreeben T.D., Chen J.Y.: One-dimensional turbulence simulation of turbulent jet diffusion flames: model formulation and illustrative applications. Combust. Flame 125, 1083–1105 (2001)

    Article  Google Scholar 

  7. Fernando H.J.S.: Turbulent mixing in stratified fluids. Ann.~Rev.~of Fluid Mech. 23, 455–493 (1991)

    Article  Google Scholar 

  8. Gonzalez-Juez E., Kerstein A.R., Lignell D.O.: Fluxes across double-diffusive interfaces: a one-dimensional-turbulence study. J. Fluid Mech. 677, 218–254 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gonzalez-Juez E., Schmidt R.C., Kerstein A.R.: ODTLES simulations of wall-bounded flows. Phys. Fluids 23, 125102 (2011)

    Article  Google Scholar 

  10. Grabowski W.W.: Entrainment and mixing in buoyancy-reversing convection with applications to cloud-top entrainment instability. Q. J. R. Meteorol. Soc. 121, 231–253 (1995)

    Article  Google Scholar 

  11. Graz, U.: H2O thermal expansion coefficients. http://physchem.kfunigraz.ac.at/sm/Service/Water/H2Othermexp.htm

  12. Hunt J.C.R., Eames I., Westerweel J.: Mechanics of inhomogeneous turbulence and interfacial layers. J. Fluid Mech. 554, 499–519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kerstein A.R.: Linear-eddy modelling of turbulent transport. Part 6. Microstructure of diffusive scalar mixing. J. Fluid Mech. 231, 361–394 (1991)

    Article  MATH  Google Scholar 

  14. Kerstein A.R.: One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant statistical flows. J. Fluid Mech. 392, 277–334 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kerstein A.R.: One-dimensional turbulence. Part 2. Staircases in double-diffusive convection. Dyn. Atmos. Oceans 30, 25–46 (1999)

    Article  Google Scholar 

  16. Kerstein A.R.: One-dimensional turbulence: a new approach to high-fidelity subgrid closure of turbulent flow simulations. Comput. Phys. Commun. 148, 1–16 (2002)

    Article  MATH  Google Scholar 

  17. Kerstein A.R.: One-dimensional turbulence: stochastic simulation of multi-scale dynamics. Lect. Notes. Phys. 756, 291–337 (2009)

    Google Scholar 

  18. Kerstein A.R., Ashurst W., Wunsch S., Nilsen V.: One-dimensional turbulence: vector formulation and application to free shear flows. J. Fluid Mech. 447, 85–109 (2001)

    Article  MATH  Google Scholar 

  19. Kerstein A.R., Wunsch S.: Simulation of a stably stratified atmospheric boundary layer using one-dimensional turbulence. BLM 118, 325–356 (2006)

    Google Scholar 

  20. Kuo H., Schubert W.H.: Stability of cloud-topped boundary layers. Q. J. R. Meteorol. Soc. 114, 887–916 (1988)

    Article  Google Scholar 

  21. McDermott R.J., Kerstein A.R., Schmidt R.C., Smith P.J.: The ensemble mean limit of the one-dimensional turbulence model and application to finite-volume large-eddy simulation. J. Turbul. 6, 1–33 (2005)

    Article  MathSciNet  Google Scholar 

  22. McEwan A.D., Paltridge G.W.: Radiatively driven thermal convection bounded by an inversion—a laboratory simulation of stratus clouds. J. Geophys. Res. 81, 1095–1102 (1976)

    Article  Google Scholar 

  23. MacVean M.K., Mason P.J.: Cloud-top entrainment instability through small-scale mixing and its parameterization in numerical models. J. Atmos. Sci. 47, 1012–1030 (1990)

    Article  Google Scholar 

  24. MacVean M.K.: A numerical investigation of the criterion for cloud-top entrainment instability. J. Atmos. Sci. 50, 2481–2495 (1993)

    Article  Google Scholar 

  25. Mellado J.: The evaporatively driven cloud-top mixing layer. J. Fluid Mech. 660, 5–36 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mellado J., Stevens B., Schmidt H., Peters N.: Buoyancy reversal in cloud-top mixing layers. Q. J. R. Meteorol. Soc. 135, 963–978 (2010)

    Article  Google Scholar 

  27. Mellado J., Stevens B., Schmidt H., Peters N.: Probability density functions in the cloud-top mixing layer. New J. Phys. 12, 085010 (2010)

    Article  Google Scholar 

  28. Mellado J., Stevens B., Schmidt H., Peters N.: Two-fluid formulation of the cloud-top mixing layer for direct numerical simulation. Theor. Comput. Fluid Dyn. 24, 511–536 (2010)

    Article  MATH  Google Scholar 

  29. Randall D.A.: Conditional instability of the first kind upside-down. J. Atmos. Sci. 37, 125–130 (1980)

    Article  Google Scholar 

  30. Sayler B.J., Breidenthal R.E.: Laboratory simulations of radiatively induced entrainment in stratiform clouds. J. Geophys. Res. 103, 8827–8837 (1998)

    Article  Google Scholar 

  31. Schmidt R.C., Kerstein A.R., McDermott R.: ODTLES: a multi-scale model for 3d turbulent flow based on one-dimensional turbulence modeling. Comput. Methods Appl. Mech. Eng. 199, 865–880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schmidt R.C., Kerstein A.R., Wunsch S., Nilsen V.: Near-wall LES closure based on one-dimensional turbulence modeling. J. Comput. Phys. 186, 317–355 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shy S.S., Breidenthal R.E.: Laboratory experiments on the cloud-top entrainment instability. J. Fluid Mech. 91, 1–15 (1990)

    Article  Google Scholar 

  34. Siems S.T., Bretherton C.S.: A numerical investigation of cloud-top entrainment instability and related experiments. Q. J. R. Meteorol. Soc. 118, 787–818 (1992)

    Article  Google Scholar 

  35. Siems S.T., Bretherton C.S., Baker M.B., Shy S., Breidenthal R.E.: Buoyancy reversal and cloud-top entrainment instability. Q. J. R. Meteorol. Soc. 116, 705–739 (1990)

    Article  Google Scholar 

  36. Snyder D., Miller M.: Random Point Processes in Time and Space. Springer, New York (1991)

    Book  MATH  Google Scholar 

  37. Stevens B.: Entrainment in stratocumulus mixed layers. Q. J. R. Meteorol. Soc. 128, 2663–2690 (2002)

    Article  Google Scholar 

  38. Stevens B.: Atmospheric moist convection. Ann. Rev. Earth Planet. Sci. 33, 605–643 (2005)

    Article  MathSciNet  Google Scholar 

  39. Stevens B.: Cloud-top entrainment instability?. J. Fluid Mech. 660, 1–4 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wunsch S.: Stochastic simulations of buoyancy reversal experiments. Phys. Fluids 15, 1442–1456 (2003)

    Article  Google Scholar 

  41. Wunsch S., Kerstein A.: A model for layer formation in stably-stratified turbulence. Phys. Fluids 13, 702–712 (2001)

    Article  Google Scholar 

  42. Wunsch S., Kerstein A.R.: A stochastic model for high-Rayleigh-number convection. J. Fluid Mech. 528, 173–205 (2005)

    Article  MATH  Google Scholar 

  43. Yamaguchi T., Randall D.: Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci. 65, 1481–1504 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Schmidt.

Additional information

Communucated by R. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, H., Kerstein, A.R., Wunsch, S. et al. Analysis and numerical simulation of a laboratory analog of radiatively induced cloud-top entrainment. Theor. Comput. Fluid Dyn. 27, 377–395 (2013). https://doi.org/10.1007/s00162-012-0288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-012-0288-4

Keywords

Navigation