Skip to main content
Log in

The respiratory variation in inferior vena cava diameter as a guide to fluid therapy

  • Brief Report
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate whether the respiratory variation in inferior vena cava diameter (ΔDIVC) could be related to fluid responsiveness in mechanically ventilated patients.

Design

Prospective clinical study.

Setting

Medical ICU of a non-university hospital.

Patients

Mechanically ventilated patients with septic shock (n=39).

Interventions

Volume loading with 8 mL/kg of 6% hydroxyethylstarch over 20 min.

Measurements and results

Cardiac output and ΔDIVC were assessed by echography before and immediately after the standardized volume load. Volume loading induced an increase in cardiac output from 5.7±2.0 to 6.4±1.9 L/min (P<0.001) and a decrease in ΔDIVC from 13.8±13.6 vs 5.2±5.8% (P<0.001). Sixteen patients responded to volume loading by an increase in cardiac output ≥15% (responders). Before volume loading, the ΔDIVC was greater in responders than in non-responders (25±15 vs 6±4%, P<0.001), closely correlated with the increase in cardiac output (r=0.82, P<0.001), and a 12% ΔDIVC cut-off value allowed identification of responders with positive and negative predictive values of 93% and 92%, respectively.

Conclusion

Analysis of ΔDIVC is a simple and non-invasive method to detect fluid responsiveness in mechanically ventilated patients with septic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients. A critical analysis of the evidence. Chest 121:2000–2008

    PubMed  Google Scholar 

  2. Morgan BC, Martin WE, Hornbein TF, Crawford EW, Guntheroth WG (1966) Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology 27:584–590

    CAS  PubMed  Google Scholar 

  3. Natori H, Tamaki S, Kira S (1979) Ultrasonographic evaluation of ventilatory effect on inferior vena caval configuration. Am Rev Respir Dis 1979; 120:421–427

    Google Scholar 

  4. Perel A (1998) Assessing fluid responsiveness by the systolic pressure variation in mechanically ventilated patients. Anesthesiology 89:1309–1310

    CAS  PubMed  Google Scholar 

  5. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321

    CAS  PubMed  Google Scholar 

  6. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    CAS  PubMed  Google Scholar 

  7. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873

    CAS  PubMed  Google Scholar 

  8. Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y, Perel A (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989

    CAS  PubMed  Google Scholar 

  9. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P, Goetz AE (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28:392–398

    Article  PubMed  Google Scholar 

  10. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G, International sepsis definitions conference (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International sepsis definitions conference. Intensive Care Med 29:530–538

    PubMed  Google Scholar 

  11. Theres H, Binkau J, Laule M, Heinze R, Hundertmark J, Blobner M, Erhardt W, Baumann G, Stangl K (1999) Phase-related changes in right ventricular cardiac output under volume-controlled mechanical ventilation with positive end-expiratory pressure. Crit Care Med 27:953–958

    Article  CAS  PubMed  Google Scholar 

  12. Mitaka C, Nagura T, Sakanishi N, Tsunoda Y, Amaha K (1989) Two-dimensional echocardiographic evaluation of inferior vena cava, right ventricle, and left ventricle during positive-pressure ventilation with varying levels of positive end-expiratory pressure. Crit Care Med 17:205–210

    CAS  PubMed  Google Scholar 

  13. Magder S, Georgiadis G, Cheong T (1992) Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care 7:76–85

    Google Scholar 

  14. Jardin F, Delorme G, Hardy A, Auvert B, Beauchet A, Bourdarias JP (1990) Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology 72:966–970

    CAS  PubMed  Google Scholar 

  15. Permutt, S, Howell JB, Proctor DF, Riley RL (1961) Effects of lung inflation on static pressure-volume characteristics of pulmonary vessels. J Appl Physiol 16:64–70

    CAS  PubMed  Google Scholar 

  16. Squara P, Dhainaut JF, Schremmer B, Sollet JP, Bleichner G (1990) Decreased paradoxic pulse from increased venous return in severe asthma. Chest 97:377–383

    CAS  PubMed  Google Scholar 

  17. Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2001) Influence of superior vena caval zone condition on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology 95:1083–1088

    CAS  PubMed  Google Scholar 

  18. Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, Jardin F (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168:671–676

    Article  PubMed  Google Scholar 

  19. Amoore JN, Santamore WP (1994) Venous collapse and the respiratory variability in systemic venous return. Cardiovasc Res 28:472–479

    CAS  PubMed  Google Scholar 

  20. Michard F, Teboul JL, Richard C (2003) Influence of tidal volume on stroke volume variation. Does it really matter? Intensive Care Med 29:1613

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Luca Bigatello (Massachusetts General Hospital-Harvard Medical School, Boston, MA) for reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Michard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feissel, M., Michard, F., Faller, JP. et al. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30, 1834–1837 (2004). https://doi.org/10.1007/s00134-004-2233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-004-2233-5

Keywords

Navigation