Skip to main content
Log in

The prostaglandins epoprostenol and iloprost increase left ventricular contractility in vivo

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

The principal effects of prostaglandin I2 are vasodilation and inhibition of platelet aggregation induced by a rise in the intracellular second messenger cAMP. In the heart a rise in intracellular myocardial cAMP increases contractility. We examined whether prostaglandin I2 increases left ventricular contractility in vivo. The effects of epoprostenol and iloprost on left ventricular contractility were assessed in vivo and compared to the effects of adenosine and sodium nitroprusside, which exerts vasodilatory properties independently of cAMP.

Design and setting

Prospective, randomized, cross-over in a university laboratory.

Subjects

Eleven pigs (25.9±2.8 kg, balanced anesthesia).

Interventions

Each animal was exposed to intravenous sodium nitroprusside, adenosine, and epoprostenol in randomized order. Iloprost was administered at the end due to its longer half-life. The dose was titrated to achieve a 25% reduction in diastolic aortic pressure.

Measurements and results

Left ventricular contractility was assessed before, during, and after each intervention by determination of the endsystolic elastance with the conductance method. While there was no change in endsystolic elastance upon the infusion of adenosine and sodium nitroprusside; endsystolic elastance increased in the case of epoprostenol (57%) and iloprost (71%) .

Conclusions

Left ventricular contractility is increased in vivo by epoprostenol and iloprost but not by adenosine or sodium nitroprusside at equipotent hypotensive dose. A contribution of sympathetic reflex activation of cardiac nerves on the increase in left ventricular contractility cannot be completely ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, Groves BM, Tapson VF, Bourge RC, Brundage BH, Koerner SK, Langleben D, Keller CA, Murali S, Uretsky BF, Clayton LM, Jöbsis MM, Blackburn SD, Shortino D, Crow JW (1996) A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 334:296–302

    Article  CAS  PubMed  Google Scholar 

  2. Kieler-Jensen N, Houltz E, Ricksten SE (1995) A comparison of prostacyclin and sodium nitroprusside for the treatment of heart failure after cardiac surgery. J Cardiothorac Vasc Anesth 9:641–646

    CAS  PubMed  Google Scholar 

  3. Rich S, McLaughlin VV (1999) The effects of chronic prostacyclin therapy on cardiac output and symptoms in primary pulmonary hypertension. J Am Coll Cardiol 34:1184–1187

    Article  CAS  PubMed  Google Scholar 

  4. Pavlovic M, Petkovic D, Cvetkovic M, Macut DJ, Zdjelar K, Nesic M, Bosnic O, Radulovic R, Mihajlovic M (1995) The influence of prostacyclin (PGI2) on contractile properties of isolated right ventricle of rat heart. Experientia 51:941–944

    CAS  PubMed  Google Scholar 

  5. Metsa KT (1981) Cyclic AMP-dependent and -independent effects of prostaglandins on the contraction-relaxation cycle of spontaneously beating isolated rat atria. Acta Physiol Scand 112:481–485

    PubMed  Google Scholar 

  6. Fassina G, Tessari F, Dorigo P (1983) Positive inotropic effect of a stable analogue of PGI2 and of PGI2 on isolated guinea pig atria. Mechanism of action. Pharmacol Res Commun 15:735–749

    CAS  PubMed  Google Scholar 

  7. Montalescot G, Drobinski G, Meurin P, Maclouf J, Sotirov I, Philippe F, Choussat R, Morin E, Thomas D (1998) Effects of prostacyclin on the pulmonary vascular tone and cardiac contractility of patients with pulmonary hypertension secondary to end-stage heart failure. Am J Cardiol 82:749–755

    Article  CAS  PubMed  Google Scholar 

  8. Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322

    CAS  PubMed  Google Scholar 

  9. Baan J, van der Velde ET, de Bruin HG, Smeenk GJ, Koops J, van Dijk AD, Temmerman D, Senden J, Buis B (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:812–823

    CAS  PubMed  Google Scholar 

  10. Jacob R, Kissling G (1989) Ventricular pressure-volume relations as the primary basis for evaluation of cardiac mechanics. Return to Frank's diagram. Basic Res Cardiol 84:227–246

    CAS  PubMed  Google Scholar 

  11. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245:H773–H780

    CAS  PubMed  Google Scholar 

  12. Kelly RP, Ting C-T, Yang T-M, Liu CP, Maughan WL, Chang M-S, Kass DA (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:513–521

    CAS  PubMed  Google Scholar 

  13. Hayashi K, Shigemi K, Shishido T, Sugimachi M, Sunagawa K (2000) Single-beat estimation of ventricular end-systolic elastance-effective arterial elastance as an index of ventricular mechanoenergetic performance. Anesthesiology 92:1769–1776

    CAS  PubMed  Google Scholar 

  14. Takeuchi M, Odake M, Takaoka H, Hayashi Y, Yokoyama M (1992) Comparison between preload recruitable stroke work and the end-systolic pressure-volume relationship in man. Eur Heart J 13 [Suppl E]:80–84

  15. Welte M, Goresch T, Frey L, Holzer K, Zwissler B, Messmer K (1995) Hypertonic saline dextran does not increase cardiac contractile function during small volume resuscitation from hemorrhagic shock in anesthetized pigs. Anesth Analg 80:1099–1107

    CAS  PubMed  Google Scholar 

  16. Fleetwood G, Bettmann MA, Gordon JL (1990) The effects of radiographic contrast media on myocardial contractility and coronary resistance: osmolality, ionic concentration, and viscosity. Invest Radiol 25:254–260

    CAS  PubMed  Google Scholar 

  17. Hohlfeld T, Zucker TP, Meyer J, Schror K (1997) Expression, function, and regulation of E-type prostaglandin receptors (EP3) in the nonischemic and ischemic pig heart. Circ Res 81:765–773

    CAS  PubMed  Google Scholar 

  18. Pavlovic M, Petkovic D, Cvetkovic M, Zdjelar K, Starcevic V, Bosnic O (1992) Study of the mechanism of prostacyclin (PgI2) action on myocardial contractility. Agents Actions Suppl 37:171–175

    CAS  PubMed  Google Scholar 

  19. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389

    Google Scholar 

  20. Mohan P, Brutsaert DL, Paulus WJ, Sys SU (1996) Myocardial contractile response to nitric oxide and cGMP. Circulation 93:1223–1229

    CAS  PubMed  Google Scholar 

  21. Liang BT (1989) Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding. J Pharmacol Exp Ther 249:775–784

    CAS  PubMed  Google Scholar 

  22. Sawmiller DR, Fenton RA, Dobson JGJ (1996) Myocardial adenosine A1 and A2 receptor activities during juvenile and adult stages of development. Am J Physiol 271:H235–H243

    CAS  PubMed  Google Scholar 

  23. Ujhelyi MR, Hulula G, Skau KA (1994) Role of exogenous adenosine as a modulator of theophylline toxicity. Crit Care Med 22:1639–1646

    Google Scholar 

  24. Romano FD, Naimi TS, Dobson-JG J (1991) Adenosine attenuation of catecholamine-enhanced contractility of rat heart in vivo. Am J Physiol 260:H1635–H1639

    CAS  PubMed  Google Scholar 

  25. Welte M, Zwissler B, Frey L, Goresch T, Kleen M, Holzer K, Messmer K (1996) Hypovolemic shock and cardiac contractility: assessment by end-systolic pressure-volume relations. Res Exp Med 196:87–104

    Article  CAS  Google Scholar 

  26. Velde ET van der, Burkhoff D, Steendijk P, Karsdon J, Sagawa K, Baan J (1991) Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation 83:315–327

    PubMed  Google Scholar 

  27. Kass DA, Beyar R, Lankford E, Heard M, Maughan WL, Sagawa K (1989) Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation 79:167–178

    CAS  PubMed  Google Scholar 

  28. Burkhoff D, Sugiura S, Yue DT, Sagawa K (1987) Contractility-dependent curvilinearity of end-systolic pressure-volume relations. Am J Physiol 252:H1218–H1227

    CAS  PubMed  Google Scholar 

  29. Velde ET van der, Burkhoff D, Steendijk P, Karsdon J, Sagawa K, Baan J (1991) Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation 83:315–327

    PubMed  Google Scholar 

  30. Kass DA, Maughan WL (1988) From 'Emax' to pressure-volume relations: a broader view. Circulation 77:1203–1212

    CAS  PubMed  Google Scholar 

  31. Spratt JA, Tyson GS, Glower DD, Davis JW, Muhlbaier LH, Olsen CO, Rankin JS (1987) The end-systolic pressure volume relationship in conscious dogs. Circulation 75:1295–1309

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The excellent advice and research terms as provided by Prof. Dr. med. Dr. h.c. mult. Konrad Meßmer are greatly acknowledged. We thank Alke Schropp for valuable contributions on sample processing, Brigitte Blount (nationally certificated keeper) and her team for professional animal care. To Dr. Maag, Institute for Medical Information Processing, Biometry and Epidemiology, and Dr. Peters, Institute for Surgical Research, we are highly indebted for designing the statistical procedure. The work was performed at the Institute for Surgical Research, Ludwig Maximilian University, Klinikum Großhadern Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Zwissler.

Additional information

The study was supported by a research grant (Reg-No. 79 FöFoLe), Medical Faculty of the Ludwig Maximilian University of Munich.

An editorial regarding this article can be found in the same issue (http://dx.doi.org/10.1007/s00134-003-1834-8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kisch-Wedel, H., Kemming, G., Meisner, F. et al. The prostaglandins epoprostenol and iloprost increase left ventricular contractility in vivo. Intensive Care Med 29, 1574–1583 (2003). https://doi.org/10.1007/s00134-003-1891-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-1891-z

Keywords

Navigation