Skip to main content
Log in

Individual and Joint Toxicity of Three Chloroacetanilide Herbicides to Freshwater Cladoceran Daphnia carinata

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Individual and joint toxicity of three chloroacetanilide herbicides to a freshwater cladoceran were studied. The 48 h-LC50 values of alachlor, acetochlor and butachlor to Daphnia carinata Dc42 were 11.1, 11.8 and 3.45 mg L−1, respectively. The toxicity was significantly (p < 0.05) related to hydrophobicity. The additive indexes of binary mixtures of three herbicides were less than zero and it showed antagonism. The body length of D. carinata treated with high concentration of herbicides was shorter than that of control group significantly (p < 0.05). It suggests that joint actions must be considered when assessing the acute toxicity of chloroacetanilide herbicides to D. carinata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Backhaus T, Faust M, Scholze M, Gramatica P, Vighi M, Grimme LH (2004) Joint algal toxicity of phenylurea herbicides is equally predictable by concentration addition and independent action. Environ Toxicol Chem 23:258–264

    Article  CAS  Google Scholar 

  • Boedeker W, Altenburger R, Faust M, Grimme LH (1992) Synopsis of concepts and models for the quantitative analysis of combination effects: from biometrics to ecotoxicology. Arch Complex Environ Stud 3:45–53

    Google Scholar 

  • Böger P, Matthes B, Schmalfuß J (2000) Review: towards the primary target of chloroacetamides - new findings pave the way. Pest Manag Sci 56:497–508

    Article  Google Scholar 

  • Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2007) Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ Toxicol 1:78–91

    Article  Google Scholar 

  • Existing Chemicals Team, Chemical Safety Group, National Industrial Chemicals Notification and Assessment Team (NICNAS) (2001) Selection procedures for priority existing chemicals. Australia, Sydney pp. 29

    Google Scholar 

  • Fairchild JF, Ruessler DS, Haverland PS, Carlson AR (1997) Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch Environ Contam Tox 32:353–357

    Article  CAS  Google Scholar 

  • Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicant. Aquat Toxicol 56:13–32

    Article  CAS  Google Scholar 

  • Howe GE, Gillis R, Mowbray RC (1998) Effect of chemical synergy and larval stage on the toxicity of atrazine and alachlor to amphibian larvae. Environ Toxicol Chem 3:519–525

    Article  Google Scholar 

  • Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2003) Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag Sci 59:1101–1110

    Article  CAS  Google Scholar 

  • Kumari N, Narayan OP, Rai LC (2009) Understanding butachlor toxicity in Aulosira fertilissima using physiological, biochemical and proteomic approaches. Chemosphere 77:1501–1507

    Article  CAS  Google Scholar 

  • Lokhanskaya VI, Shcherban EP (2010) Study of toxicity of the herbicide “genius” in acute and chronic experiments on cladocera. Hydrobiol J 3:92–102

    Google Scholar 

  • Ma JY, Wang SF, Wang PW, Ma LJ, Chen XL, Xu RF (2006) Toxicity assessment of 40 herbicides to the green alga Raphidocelis subcapitata. Ecotox Environ Safe 63:456–462

    Article  CAS  Google Scholar 

  • Magnusson M, Heimann K, Quayle P, Negri AP (2010) Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. Mar Pollut Bull 60:1978–1987

    Article  CAS  Google Scholar 

  • Marking LL (1985) Toxicity of chemical mixtures. In: Rand G, Petrocelli S (eds) Fundamentals of aquatic toxicology. Hemisphere Publishing Corporation, Washington, DC, pp 164–176

    Google Scholar 

  • McFarland JW (1970) On the parabolic relationship between drug potency and hydrophobicity. J Med Chem 13:1192–1196

    Article  CAS  Google Scholar 

  • Organization for the Economic Cooperation and Development (2004) OECD guideline for testing of chemicals 202-Daphnia sp., acute immobilisation test. In: OECD, Paris

  • Phyu YL, Warne MSJ, Lim RP (2004) Toxicity of atrazine and molinate to the cladoceran Daphnia carinata and the effect of river water and bottom sediment on their bioavailability. Arch Environ Contam Tox 3:308–315

    Google Scholar 

  • Tanabe A, Mitobe H, Kawata K, Sakai M (1996) Monitoring of herbicides in river water by gas chromatography-mass spectrometry and solid-phase extraction. J Chromatogr A 754:159–168

    Article  CAS  Google Scholar 

  • Tatum VL, Borton DL, Streblow WR, Louch J, Shepard JP (2011) Acute toxicity of commonly used forestry herbicide mixtures to Ceriodaphnia dubia and Pimephales promelas. Environ Toxicol. doi:10.1002/tox.20686

    Google Scholar 

  • Wany YS, Jaw CG, Tang HC, Lin TS, Chen YL (1992) Accumulation and release of herbicides butachlor, thiobencarb, and chlomethoxyfen by fish, clam, and shrimp. B Environ Contam Tox 48:474–480

    CAS  Google Scholar 

  • WHO/FAO (1996) WHO/FAO data sheets on pesticides. WHO/PCS/DS/96.86

  • Wu YG, Lin CX, Yuan L (2007) Characteristics of six cladocerans in relation to ecotoxicity testing. Ecol Indic 7:768–775

    Article  CAS  Google Scholar 

  • Xu XQ, Yang HH, Wang L, Han B, Wang XR, Lee FSC (2007) Analysis of chloroacetanilide herbicides in water samples by solid-phase microextraction coupled with gas chromatography—mass spectrometry. Anal Chim Acta 591:87–96

    Article  CAS  Google Scholar 

  • Yang Z, Dong B, Wu J (2004) Sensitivity of Chlorella vulgaris to metribuzin, puma and alachlor. Chin J Appl Ecol 15:1621–1625

    CAS  Google Scholar 

  • Yu YL, Chen YX, Luo YM, Pan XD, He YF, Wong MH (2003) Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere 50:771–774

    Article  CAS  Google Scholar 

  • Zeljenková D, Kovrižnych JA, Szabová E (2006) Acute toxicity of selected chemicals in adult zebrafish (Danio rerio) and its early life stages-the comparative study. Reprod Toxicol 2:285

    Google Scholar 

Download references

Acknowledgments

The project was co-funded by the National Natural Science Foundation of China (No. 31000246), the Special Fund for Agro-Scientific Research in the Public Interest of China (No. 201303141), the Key Laboratory of Fishery Ecology and Environment, Guangdong Province (No. GDKFL2012-12), and the Natural Science Foundation of Guangdong Province (No. 9451064201003803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhi He or Huashou Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Chen, G., Yu, J. et al. Individual and Joint Toxicity of Three Chloroacetanilide Herbicides to Freshwater Cladoceran Daphnia carinata . Bull Environ Contam Toxicol 90, 344–350 (2013). https://doi.org/10.1007/s00128-012-0898-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-012-0898-y

Keywords

Navigation