Skip to main content

Advertisement

Log in

The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite). The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif. A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Anderson EB, Ivanov PA, Komínek J (1988) Ore metasomatism at the uranium veins of the Rožná deposit. Geol Hydrometal Uranium 12:70–88 (in Czech with English summary)

    Google Scholar 

  • Arapov JA, Bojcov VJ, Česnokov NI, Djakonov AV, Halbrštát J, Jakovjenko AM, Kolek M, Komínek J, Kozyrev VN, Kremčukov GA, Lažanský M, Milovanov V, Nový C, Šorf F (1984) Uranium deposits of the Czechoslovakia. Czechoslovak Uranium Industry, Prague, p 420 (in Czech with English summary)

    Google Scholar 

  • Bakker RJ, Diamond LW (2000) Determination of the composition and molar volume of H2O-CO2 fluid inclusions by microthermometry. Geochim Cosmochim Acta 64:1753–1764

    Article  Google Scholar 

  • Bodnar RJ, Vityk MO (1995) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals: methods and applications. Short course of the working group “Inclusion in Minerals”. Virginia Polytechnic Institute, Blacksburg, VA, pp 117–130

    Google Scholar 

  • Borisenko AS (1977) Cryotechnic methods for the determination of fluid inclusions salts in minerals. Geol Geofiz 8:16–27 (in Russian)

    Google Scholar 

  • Brandmayr M, Dallmeyer RD, Handler R (1995) Conjugate shear zones in the Southern Bohemian Massif (Austria)—implications for Variscan and Alpine tectonothermal activity. Tectonophysics 248:97–116

    Article  Google Scholar 

  • Cathelineau M (1986) The hydrothermal alkali metasomatism effects on granitic rocks: quartz dissolution and related subsolidus changes. J Petrol 27:945–965

    Google Scholar 

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485

    Article  Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244

    Article  Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates. Geochim Cosmochim Acta 27:43–52

    Article  Google Scholar 

  • Cole DR, Ripley EM (1998) Oxygen isotope fractionation between chlorite and water from 170–350°C: A preliminary assessment based on partial exchange and fluid/rock experiments. Geochim Cosmochim Acta 63:449–457

    Article  Google Scholar 

  • Cuney M, Leroy J, Molina P (1989) Metalogenesis in the French part of the Variscan orogen. Part 1. U-preconcentration in the pre-Variscan and Variscan formations—a comparison with Sn, W and Au. Tectonophysics 117:39–57

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1964) Rock-forming minerals. Volume 3. Sheet slilicates. Longman, London

    Google Scholar 

  • Dobeš P, Žák K, Kříbek B (2001) Fluid inclusion and stable isotope study of the Rožná uranium deposit, Czech Republic. In: Noronha F, Dória A, Guedes A (eds) ECROFI XVI, European Current Research on Fluid Inclusions, Porto 2001, Abstracts, Universidade do Porto, pp 115–117

  • Evert L, Shock DC, Sassani C, Betz H (1997) Uranium in geologic fluids: Estimates of standard partial molar properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochim Cosmochim Acta 61:4245–4266

    Article  Google Scholar 

  • Franců J, Sýkorová I, Franců E, Šafanda J, Malý L (1998) Vitrinite reflectance of coals in the Boskovice Furrow as related to thermal and burial history. In: Pešek J, Opluštil O (eds) VIII. Coal Geology Conference, Abstracts, Charles University, Prague, pp 28

  • Franke W (2006) The Variscan orogen in Central Europe: construction and collapse. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society, London, Memoires 32, pp 334–343

  • French BM (1966) Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressure. Rev Geophys 4:223–253

    Article  Google Scholar 

  • Frost BR (1979) Mineral equilibria involving mixed-volatiles in a C–O–H fluid phase: the stabilities of graphite and siderite. Am J Sci 279:1033–1059

    Google Scholar 

  • Fuchs G (1986) Zur Diskussion um den Deckenbau der Boehmischen Masse. Jahrb Geol Bundesanst 129:41–49

    Google Scholar 

  • Gieré R (1990) Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova 2:60–67

    Article  Google Scholar 

  • Grinenko VA (1962) Preparation of sulfur dioxide for isotopic analyses. Zhurnal Neorganiceskoi Chimii 7:2479 (in Russian)

    Google Scholar 

  • Handler R, Brandmayr M, Dallmeyer RD, Wallbrecher E (1991) Age and kinematics of shear zones in the southern Bohemian Massif. In: Anonymous (ed) Sixth Meeting of the European Union of Geosciences, Terra abstracts 3. Blackwell Scientific, Oxford, pp 206

  • Hecht L, Cuney M (2000) Hydrothermal alternation of monazite in the Precambrian crystalline basement of the Athabasca Basin (Saskatchewan, Canada): implications for the formation of unconformity-related uranium deposits. Miner Depos 35:791–795

    Article  Google Scholar 

  • Hein UF (1993) Synmetamorphic Variscan siderite mineralization of the Rhenish Massif, Central Europe. Mineral Mag 57:451–467

    Article  Google Scholar 

  • Hein UF, Lehmann B, Kříbek B, René M (2002) Evolution of ore-forming fluids along the Rožná-Olší shear zone, Bohemian massif, Czech Republic: implication for local uranium deposition and comparison with U-mineralization at Schlema, Erzgebirge, Germany. In: Kříbek B, Zeman J (eds) Uranium deposits: from their genesis to their environmental aspects. Proceedings of the International Workshop, Czech Geological Survey, Prague, pp 61–64

  • Hendel EM, Hollister LS (1981) An empirical solvus for CO2–H2O–2.6 wt. % salt. Geochim Cosmochim Acta 45:225–228

    Article  Google Scholar 

  • Hey MH (1954) A new review of the chlorites. Mineral Mag 30:277–292

    Article  Google Scholar 

  • Jensen KA, Ewing RC (2001) The Okélobondo natural fission reactor, southeast Gabon: Geology, mineralogy, and retardation of nuclear-reaction products. Geol Soc Amer Bull 113:32–62

    Article  Google Scholar 

  • Johan Z, Kvaček M (1971) La bukovite, Cu3 + x Tl2FeSe4 − x , une nouvelle espéce minérale. Bull Soc Géol Mineral Crystallogr 94:529–533

    Google Scholar 

  • Johan Z, Kvaček M, Picot P (1976) Petrovicite, Cu3HgPbBiSe5, a new mineral. Bull Soc Géol Mineral Crystallogr 99:310–313

    Google Scholar 

  • Johan Z, Kvaček M, Picot P (1978) La sabatierite, un nouveau seléniure de cuivre et de thallium. Bull Soc Géol Mineral Crystallogr 99:310–313

    Google Scholar 

  • Jowett EC (1991) Fitting iron and magnesium into hydrothermal chlorite geothermometer. GAC/MAC/SEG Joint Annual Meeting, Program with Abstracts, Toronto, A62, pp 16

  • Kapusta Y, Steinitz G, Allerman A, Sandler A, Kotlarsky P, Nagler A (1997) Monitoring the deficit of Ar-39 in irradiated clay fractions and glauconites: modelling and analytical procedure. Geochim Cosmochim Acta 61:4671–4678

    Article  Google Scholar 

  • Kotková J, Schaltegger U, Leichmann J (2003) 338–335 Ma old intrusion in the E Bohemian Massif—a relict of the orogen-wide durbachitic magmatism in European Variscides. J Czech Geol Soc 48:80–81

    Google Scholar 

  • Kříbek B, Hájek A (eds) (2005) The Rožná uranium deposit. Czech Geological Survey, Prague, p 163 (in Czech with English summary)

  • Kříbek B, Hladíková J, Holeczy D (2002) Anhydrite-bearing rocks from the Rožná district (Moldanubian zone, Czech Republic: high-grade metamorphosed exhalites? Miner Depos 37:465–479

    Google Scholar 

  • Kříbek B, Hladíková J, Žák K, Bendl M, Pudilová M, Uhlík Z (1996) The barite-hyalophane sulfidic ores at Rožná, Bohemian Massif, Czech Republic: metamorphosed black shale-hosted submarine exhalative mineralization. Econ Geol 91:14–35

    Google Scholar 

  • Kříbek B, Žák K, Spangenberg J, Jehlička J, Prokeš S, Komínek J (1999) Bitumens in the Late Variscan hydrothermal vein-type uranium deposit of Příbram, Czech Republic: sources, radiation-induced alteration, and relation to mineralization. Econ Geol 94:1093–1114

    Google Scholar 

  • Kröner A, O’Brien PJ, Nemchin AA, Pidgeon RT (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contrib Mineral Petrol 138:127–142

    Article  Google Scholar 

  • Landais P, Dereppe JM (1985) A chemical study of the carbonaceous material from the Carswell structure. In: Laine R, Alonso D, Šváb M (eds) The Carswell structure. Uranium deposits, Saskatchewan. Geol Assoc Can Spec Pap 29:165–174

  • Leichmann J, Matula M, Broska I, Holeczy D (2002) Low-degree partial melting of metapelites—another possible implement for selective concentration of uranium: example from the Rožná uranium deposit, Bohemian Massif. In: Kříbek B, Zeman J (eds) Uranium deposits: from their genesis to their environmental aspects. Proceedings of the International Workshop, Czech Geological Survey, Prague, pp 75–78

  • Leroy J (1984) The episyenitization in uranium deposit in Bernardan (Marche)—comparison with similar deposits of northwestern area of the French Massif Central. Miner Depos 19:26–35

    Article  Google Scholar 

  • Leybourne MI, Clark ID, Goodfellow WD (2006) Stable isotope geochemistry of ground and surface waters associated with undisturbed massive sulfide deposits; constraints on origin of waters and water-rock reactions. Chem Geol 231:300–325

    Article  Google Scholar 

  • Ludwig F (1980) Calculations of uncertainties of U–Pb isotope data. Earth Planet Sci Lett 46:212–220

    Article  Google Scholar 

  • Matté P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: Result of large-scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  • Matura A (1984) Das Kristallin am Suedostrand der Boehmischen Masse zwischen Ybbs/Donau und St. Poelten. Jahrb Geol Bundesanst 127:13–27

    Google Scholar 

  • McCrea JM (1950) The isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet Ch, Provost A (1996) A fast reliable inexpensive in-situ dating technique: Electron microprobe ages on monazite. Chem Geol 13:37–53

    Article  Google Scholar 

  • Negrel P, Casanova J (2005) comparison of the Sr isotopic signatures in brines of the Canadian and Fennoscandian shields. Appl Geochem 20:749–766

    Article  Google Scholar 

  • OECD-IAEA (2003) Uranium 2002. OECD Nuclear Energy Agency and International Atomic Energy Agency, Vienna, Paris, p 156

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. 2nd edn. Wiley, New York, p 482

    Google Scholar 

  • Percival JB, Bell K, Torrance JK (1993) Clay mineralogy and isotope geochemistry of the alteration halo at the Cigar Lake uranium deposit. Can J Earth Sci 30:689–704

    Article  Google Scholar 

  • Pešek J, Holub V, Jaroš J, Malý L, Martínek K, Prouza V, Spudil J, Tásler R (2001) Geology and mineral deposits of the Upper Palaeozoic limnic bassins of the Czech Republic. Czech Geological Survey, Prague, p 244 (in Czech with English summary)

    Google Scholar 

  • Potter RW (1979) Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric properties of the NaCl–H2O. J Res US Geol Surv 5:603–607

    Google Scholar 

  • Poty B, Leroy J, Jachimowicz L (1976) Un nouvel appareil pour la mesure des temperatures sous le microscope: L’installation de microthermometrie Chaixmeca. Bull Soc Géol Mineral Crystallogr 99:182–186

    Google Scholar 

  • Radvanec M, Grecula P, Žák K (2004) Siderite mineralization of the Gemericum superunit (Western Carpathians, Slovakia): review and a revised genetic model. Ore Geol Rev 24:267–298

    Article  Google Scholar 

  • Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks: evidence for zirconium mobility at ~250°C. Contrib Mineral Petrol 150:146–155

    Article  Google Scholar 

  • René M (2002) The REE–U–Th distribution in hydrothermally altered rocks at the Rožná uranium deposit, Czech Republic. In: Kříbek B, Zeman J (eds.) Uranium deposits: From their genesis to their environmental aspects. Proceedings of the International Workshop organized by the Czech Group of the IAGOD, Prague, 10–11 September, 2002, Czech Geological Survey, Prague, pp 107–110

  • René M (2008) Anomalous rare earth element, yttrium and zirconium mobility associated with uranium mineralization. Terra Nova 20:52–58

    Google Scholar 

  • Rieder M, Cavazzini G, D’yakonov Y, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Müller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the micas. Clays Clay Miner 46:586–595

    Article  Google Scholar 

  • Rubin JN, Henry ChD, Price JG (1993) The mobility of zirconium and other immobile elements during hydrothermal alteration. Chem Geol 110:29–47

    Article  Google Scholar 

  • Savin SM, Lee M (1988) Isotopic studies of phyllosilicatess. In: Bailey SW (ed) Hydrous phyllosilicates. Rev Miner 19:189–223

    Google Scholar 

  • Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM, Urban M, Lobkowitz M (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92

    Article  Google Scholar 

  • Schulmann K, Thompson AB, Jezek J (1999) Crustal thickening and exhumation in the Moldanubian zone. Terra Nostra 99:1

    Google Scholar 

  • Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. Am J Sci 305:407–448

    Article  Google Scholar 

  • Sheppard SMF (1986) Characterization and izotopic variations in natural waters. In: Valley JW, Taylor JHP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Mineralogical Society of America, Chelsea, pp 165–183

    Google Scholar 

  • Skoček V, Šmejkal V, Král J, Hladíková J (1977) Isotopic composition of carbonates and sulphates from the Permo-Carboniferous of central Bohemia and the Krkonoše-piedmont Basin. Bull Czech Geol Surv 52:1–11

    Google Scholar 

  • Stevens RE (1946) A system for calculating analyses of micas and related minerals to end members. Bull Geol Surv USA 950:101–119. Washington D. C.

    Google Scholar 

  • Sverjensky D (1987) The role of migrating oil field brines in the formation of sediment-hosted Cu-rich deposits. Econ Geol 82:1130–1141

    Google Scholar 

  • Suzoki T, Epstein S (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim Cosmochim Acta 40:1229–1240

    Article  Google Scholar 

  • Tajčmanová L, Konopásek J, Schulmann K (2006) Thermal evolution of the orogenic lower crust during exhumation within ma thickened Moldanubian root of the Variscan Belt of Central Europe. J Metamorph Geol 24:119–134

    Article  Google Scholar 

  • Thiele O (1976) Zur Tektonik des Waldviertels in Niederoesterreich (suedliche Boehmische Masse). Nova Acta Leopold 45:67–82

    Google Scholar 

  • Tollmann A (1982) Grossraumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotekton Forsch 64:1–91

    Google Scholar 

  • Turpin L, Ramboz C, Sheppard-Simon MF (1981) Chemical and isotopic evolution of the fluids in the Sn-W deposit, Panasqueira, Portugal. Terra Cognita, Special Issue, p 42

  • Turpin L, Leroy JL, Sheppard SMF (1990) Isotopic systematics (O, H, C, Sr, Nd) of superimposed barren and U-bearing hydrothermal systems in a Hercynian granite, Massif Central, France. Chem Geol 88:85–98

    Article  Google Scholar 

  • Van den Kerkhof AM, Thiery R (2001) Carbonic inclusions. Lithos 55:49–68

    Article  Google Scholar 

  • Vilhelm S, Bajer B, Hájek A, Halík L, Hejtmánek J, Konopásek R, Chrást M, Křivánek K, Kubeček J, Mach J, Nohál M, Pesch J, Bullová J, Rozhoň V, Šenk M, Uhlík Z, Vokoun J, Žváček B (1984) General evaluation of the uranium reserves at the Rožná-Olší ore field. Czechoslovak Uranium Industry Technical Report 123-84, p 345

  • Vencelides Z (1991) Sulphide and barite mineralization at the Rožná deposit. MSc Thesis, Charles University, Prague, p 112 (in Czech with English abstract)

  • Vosteen HD, Weinoldt M (1997) Flüssigkeitseinschlußpetrographie und geochemische Untersuchungen zur Entstehung der Uranlagerstätte Rozna/Tschechische Republik. MSc Thesis, Technische Universität Clausthal, p 125

  • Wilde AR, Mernagh TP, Bloom MS, Hoffmann ChF (1989) Fluid inclusion evidence on the origin of some Australian unconformity-related uranium deposits. Econ Geol 84:1627–1642

    Google Scholar 

  • Wilkinson JJ, Jenkin GRT, Fallick AE, Foster RP (1995) Oxygen and hydrogen isotopic evolution of Variscan crustal fluids, south Cornwall, U.K. Chem Geol 123:239–254

    Article  Google Scholar 

  • Wilson NSF, Stasiuk LD, Fowler MG (2003) Post-mineralization origin of organic matter in Athabasca unconformity uranium deposits, Saskatchewan, Canada. In: Cuney M (ed) Uranium geochemistry 2003. University H. Poincaré, Nancy, pp 383–384

    Google Scholar 

  • Žák K, Dobeš P, Kříbek B, Pudilová M, Hájek A, Holeczy D (2001) Evolution of fluid types at the Rožná uranium deposit, Czech Republic. Stable isotope and fluid inclusion study. In: Piestrzyński J (ed) Mineral deposits at the beginning of the 21st century. Balkema, Lisse, pp 109–113

    Google Scholar 

  • Zang W, Fyfe WS (1995) Chloritization of the hydrothermally altered bedrocks at the Igarapé Bahia gold deposit, Carajás, Brasil. Miner Depos 30:30–38

    Article  Google Scholar 

  • Zheng YF (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263

    Article  Google Scholar 

  • Ziegler PA (1996) Geological atlas of Western and Central Europe. Shell, Hague, p 130

    Google Scholar 

Download references

Acknowledgments

This study is based on results of tens of unpublished, and formerly held secret, reports available exclusively from the archives of the Diamo State Enterprise. For many years, the deposit was studied by Russian geologists, i.e., I.M. Bayushkin, V. Ye. Boytsov, J.M. Dymkov, P.A. Ivanov, B.P. Yurgenson, V.S. Katargin and, at different stages of exploitation, by Czech geologists, i.e., F. Fediuk, J. Komínek, M. Kvaček, J. Malec, F. Novák, P. Pauliš, V. Rozhoň, Z. Uhlík, S. Vilhelm, J. Vokoun, V. Zrůstek, and many others. The present paper could have never originated without their detailed geological, mineralogical, and structural studies.

The manuscript benefited from reviews by M. Pagel and an anonymous reviewer. Last but not the least, we wish to thank P. Sulovský and J. Zimák for their interpretation of chlorite chemistry, I. Vavřín, Z. Korbelová, and V. Šrein for microprobe analyses, J. Schneeweis for Mössbauer spectra of phyllosilicates, B. Humer for the determination of chemical U–Pb ages of monazite, and J. Adamovič for his English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Kříbek.

Additional information

Editorial handling: M. Cuney

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kříbek, B., Žák, K., Dobeš, P. et al. The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Miner Deposita 44, 99–128 (2009). https://doi.org/10.1007/s00126-008-0188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-008-0188-0

Keywords

Navigation